1,439 research outputs found

    CubeSat Packaged Electrospray Thruster Evaluation for Enhanced Operationally Responsive Space Capabilities

    Get PDF
    A new specialized electrospray thruster with a potential to be used with a 3-U CubeSat was operated. The key difference in this thruster from traditional colloid thrusters is the porous stainless steel surface used for the emission sites. With this porous surface the actual location and number of the Taylor cones formations vary with changing fuel flow. The understanding of these formations is discussed with low, moderate, and high flow rates. The limitations of the experiment and observed system response are discussed. Due to these limitations, the colloid thruster was only able to operate in the low mass flow rate regim

    Criterion for purely elastic Taylor-Couette instability in the flows of shear-banding fluids

    Get PDF
    In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In micellar solutions, many of the data collected exhibit unexplained spatio-temporal fluctuations. Recently, it has been suggested that those fluctuations originate from a purely elastic instability of the flow. In cylindrical Couette geometry, the instability is reminiscent of the Taylor-like instability observed in viscoelastic polymer solutions. In this letter, we describe how the criterion for purely elastic Taylor-Couette instability should be adapted to shear-banding flows. We derive three categories of shear-banding flows with curved streamlines, depending on their stability.Comment: 6 pages, 3 figure

    Potential "ways of thinking" about the shear-banding phenomenon

    Get PDF
    Shear-banding is a curious but ubiquitous phenomenon occurring in soft matter. The phenomenological similarities between the shear-banding transition and phase transitions has pushed some researchers to adopt a 'thermodynamical' approach, in opposition to the more classical 'mechanical' approach to fluid flows. In this heuristic review, we describe why the apparent dichotomy between those approaches has slowly faded away over the years. To support our discussion, we give an overview of different interpretations of a single equation, the diffusive Johnson-Segalman (dJS) equation, in the context of shear-banding. We restrict ourselves to dJS, but we show that the equation can be written in various equivalent forms usually associated with opposite approaches. We first review briefly the origin of the dJS model and its initial rheological interpretation in the context of shear-banding. Then we describe the analogy between dJS and reaction-diffusion equations. In the case of anisotropic diffusion, we show how the dJS governing equations for steady shear flow are analogous to the equations of the dynamics of a particle in a quartic potential. Going beyond the existing literature, we then draw on the Lagrangian formalism to describe how the boundary conditions can have a key impact on the banding state. Finally, we reinterpret the dJS equation again and we show that a rigorous effective free energy can be constructed, in the spirit of early thermodynamic interpretations or in terms of more recent approaches exploiting the language of irreversible thermodynamics.Comment: 14 pages, 6 figures, tutorial revie

    Minkowski Functionals of Abell/ACO Clusters

    Get PDF
    We determine the Minkowski functionals for a sample of Abell/ACO clusters, 401 with measured and 16 with estimated redshifts. The four Minkowski functionals (including the void probability function and the mean genus) deliver a global description of the spatial distribution of clusters on scales from 1010 to 60\hMpc with a clear geometric interpretation. Comparisons with mock catalogues of N--body simulations using different variants of the CDM model demonstrate the discriminative power of the description. The standard CDM model and the model with tilted perturbation spectrum cannot generate the Minkowski functionals of the cluster data, while a model with a cosmological constant and a model with breaking of the scale invariance of perturbations (BSI) yield compatible results.Comment: 10 pages, 13 Postscript figures, uses epsf.sty and mn.sty (included), submitted to MNRA

    The First Stars

    Full text link
    We review recent theoretical results on the formation of the first stars in the universe, and emphasize related open questions. In particular, we discuss the initial conditions for Population III star formation, as given by variants of the cold dark matter cosmology. Numerical simulations have investigated the collapse and the fragmentation of metal-free gas, showing that the first stars were predominantly very massive. The exact determination of the stellar masses, and the precise form of the primordial initial mass function, is still hampered by our limited understanding of the accretion physics and the protostellar feedback effects. We address the importance of heavy elements in bringing about the transition from an early star formation mode dominated by massive stars, to the familiar mode dominated by low mass stars, at later times. We show how complementary observations, both at high redshifts and in our local cosmic neighborhood, can be utilized to probe the first epoch of star formation.Comment: 38 pages, 10 figures, draft version for 2004 Annual Reviews of Astronomy and Astrophysics, high-resolution version available at http://cfa-www.harvard.edu/~vbromm

    Radiant Barrier Insulation Performance in Full Scale Attics with Soffit and Ridge Venting

    Get PDF
    There is a limited data base on the full scale performance of radiant barrier insulation in attics. The performance of RBS have been shown to be dependent on attic ventilation characteristics. Tests have been conducted on a duplex located in Florida with soffit and ridge venting to measure attic performance. The unique features of these experiments are accurate and extensive instrumentation with heat flow meters, field verification of HFM calibration, extensive characterization of the installed ceiling insulation, ventilation rate measurements and extensive temperature instrumentation. The attics are designed to facilitate experimental changes without damaging the installed insulation. RBS performance has been measured for two natural ventilation levels for soffit and ridge venting. Previously, no full scale data have been developed for these test configurations. Test data for each of the test configurations was acquired for a minimum of two weeks with some acquired over a five week period. The Rl9 insulation performed as expected

    Discrete Adjoint Method for Variational Integration of Constrained ODEs and its application to Optimal Control of Geometrically Exact Beam Dynamics

    Full text link
    Direct methods for the simulation of optimal control problems apply a specific discretization to the dynamics of the problem, and the discrete adjoint method is suitable to calculate corresponding conditions to approximate an optimal solution. While the benefits of structure preserving or geometric methods have been known for decades, their exploration in the context of optimal control problems is a relatively recent field of research. In this work, the discrete adjoint method is derived for variational integrators yielding structure preserving approximations of the dynamics firstly in the ODE case and secondly for the case in which the dynamics is subject to holonomic constraints. The convergence rates are illustrated by numerical examples. Thirdly, the discrete adjoint method is applied to geometrically exact beam dynamics, represented by a holonomically constrained PDE.Comment: Funding: H2020 Marie-Sk\l{}odowska-Curie 86012

    A new Lagrangian approach to control affine systems with a quadratic Lagrange term

    Full text link
    In this work, we consider optimal control problems for mechanical systems on vector spaces with fixed initial and free final state and a quadratic Lagrange term. Specifically, the dynamics is described by a second order ODE containing an affine control term and we allow linear coordinate changes in the configuration space. Classically, Pontryagin's maximum principle gives necessary optimality conditions for the optimal control problem. For smooth problems, alternatively, a variational approach based on an augmented objective can be followed. Here, we propose a new Lagrangian approach leading to equivalent necessary optimality conditions in the form of Euler-Lagrange equations. Thus, the differential geometric structure (similar to classical Lagrangian dynamics) can be exploited in the framework of optimal control problems. In particular, the formulation enables the symplectic discretisation of the optimal control problem via variational integrators in a straightforward way

    Mechanism of Vanadium Leaching during Surface Weathering of Basic Oxygen Furnace Steel Slag Blocks: A Microfocus X-ray Absorption Spectroscopy and Electron Microscopy Study

    Get PDF
    © 2017 American Chemical Society. Basic oxygen furnace (BOF) steelmaking slag is enriched in potentially toxic V which may become mobilized in high pH leachate during weathering. BOF slag was weathered under aerated and air-excluded conditions for 6 months prior to SEM/EDS and μXANES analysis to determine V host phases and speciation in both primary and secondary phases. Leached blocks show development of an altered region in which free lime and dicalcium silicate phases were absent and Ca-Si-H was precipitated (CaCO 3 was also present under aerated conditions). μXANES analyses show that V was released to solution as V(V) during dicalcium silicate dissolution and some V was incorporated into neo-formed Ca-Si-H. Higher V concentrations were observed in leachate under aerated conditions than in the air-excluded leaching experiment. Aqueous V concentrations were controlled by Ca 3 (VO 4 ) 2 solubility, which demonstrate an inverse relationship between Ca and V concentrations. Under air-excluded conditions Ca concentrations were controlled by dicalcium silicate dissolution and Ca-Si-H precipitation, leading to relatively high Ca and correspondingly low V concentrations. Formation of CaCO 3 under aerated conditions provided a sink for aqueous Ca, allowing higher V concentrations limited by kinetic dissolution rates of dicalcium silicate. Thus, V release may be slowed by the precipitation of secondary phases in the altered region, improving the prospects for slag reuse
    corecore