547 research outputs found

    Fermi Surface Reconstruction in CeRh1−x_{1-x}Cox_{x}In5_{5}

    Full text link
    The evolution of the Fermi surface of CeRh1−x_{1-x}Cox_xIn5_5 was studied as a function of Co concentration xx via measurements of the de Haas-van Alphen effect. By measuring the angular dependence of quantum oscillation frequencies, we identify a Fermi surface sheet with ff-electron character which undergoes an abrupt change in topology as xx is varied. Surprisingly, this reconstruction does not occur at the quantum critical concentration xcx_c, where antiferromagnetism is suppressed to T=0. Instead we establish that this sudden change occurs well below xcx_c, at the concentration x ~ 0.4 where long range magnetic order alters its character and superconductivity appears. Across all concentrations, the cyclotron effective mass of this sheet does not diverge, suggesting that critical behavior is not exhibited equally on all parts of the Fermi surface.Comment: 4 pages, 4 figure

    Irregular vector turbo codes with low complexity

    Get PDF
    The term Block Turbo Code typically refers to the iterative decoding of a serially concatenated two-dimensional systematic block code. This paper introduces a Vector Turbo Code that is irregular but with code rates comparable to those of a Block Turbo Code (BTC) when the Bahl Cocke Jelinek Raviv algorithm is used. In BTC’s, the horizontal (or vertical) blocks are encoded first and the vertical (or horizontal) blocks second. The irregular Vector Turbo Code (iVTC) uses information bits that participate in varying numbers of trellis sections, which are organized into blocks that are encoded horizontally (or vertical) without vertical (or horizontal) encoding. The decoding requires only one soft-input soft-output decoder. In general, a reduction in complexity, in comparison to a BTC was achieved for the same very low probability of bit error (10−5). Performance in the AWGN channel shows that iVTC is capable of achieving a significant coding gain of 1.28dB for a 64QAM modulation scheme, at a bit error rate of 10−5over its corresponding BTC. Simulation results also show that some of these codes perform within 0.49dB of capacity for binary transmission over an AWGN channel

    Direct IF sampling receivers for 5G millimeter-wave communications systems

    Get PDF
    Reducing receiver complexity and power consumption are important design goals in fifth-generation (5G) millimeter-wave (mm-wave) communications systems. One approach for achieving these goals is to employ direct intermediate frequency (IF) sampling at sub-Nyquist rates in a superheterodyne receiver architecture using digital downconversion of the IF signal. This paper presents original measured results characterizing in detail the signal-to-noise-ratio (SNR), error vector magnitude (EVM), and block error rate (BLER) performances of a direct IF subsampling mm-wave receiver with subsampling rate as a parameter. A software-defined radio (SDR) receiver using direct IF subsampling was implemented in a 28GHz, beamforming, over-the-air (OTA), hardware-in-the-loop (HWIL), SDR testbed using a 2.52 GHz IF. For a quadrature phase shift keying (QPSK) modulated long-term evolution (LTE) signal subsampled at 500 MHz, a small SNR penalty of ˜3dB at 5% BLER was obtained over a 10 GHz Nyquist sampling benchmark

    Genomic Exploration of Distinct Molecular Phenotypes Steering Temozolomide Resistance Development in Patient-Derived Glioblastoma Cells

    Get PDF
    Chemotherapy using temozolomide is the standard treatment for patients with glioblastoma. Despite treatment, prognosis is still poor largely due to the emergence of temozolomide resistance. This resistance is closely linked to the widely recognized inter- and intra-tumoral heterogeneity in glioblastoma, although the underlying mechanisms are not yet fully understood. To induce temozolomide resistance, we subjected 21 patient-derived glioblastoma cell cultures to Temozolomide treatment for a period of up to 90 days. Prior to treatment, the cells’ molecular characteristics were analyzed using bulk RNA sequencing. Additionally, we performed single-cell RNA sequencing on four of the cell cultures to track the evolution of temozolomide resistance. The induced temozolomide resistance was associated with two distinct phenotypic behaviors, classified as “adaptive” (ADA) or “non-adaptive” (N-ADA) to temozolomide. The ADA phenotype displayed neurodevelopmental and metabolic gene signatures, whereas the N-ADA phenotype expressed genes related to cell cycle regulation, DNA repair, and protein synthesis. Single-cell RNA sequencing revealed that in ADA cell cultures, one or more subpopulations emerged as dominant in the resistant samples, whereas N-ADA cell cultures remained relatively stable. The adaptability and heterogeneity of glioblastoma cells play pivotal roles in temozolomide treatment and contribute to the tumor’s ability to survive. Depending on the tumor’s adaptability potential, subpopulations with acquired resistance mechanisms may arise.</p

    Medically Biodegradable Hydrogenated Amorphous Silicon Microspheres

    Full text link
    [EN] Hydrogenated amorphous silicon colloids of low surface area (<5 m(2)/g) are shown to exhibit complete in-vitro biodegradation into orthosilicic acid within 10-15 days at 37 degrees C. When converted into polycrystalline silicon colloids, by high temperature annealing in an inert atmosphere, microparticle solubility is dramatically reduced. The data suggests that amorphous silicon does not require nanoscale porosification for full in-vivo biodegradability. This has significant implications for using a-Si:H coatings for medical implants in general, and orthopedic implants in particular. The high sphericity and biodegradability of submicron particles may also confer advantages with regards to contrast agents for medical imaging.This work has been partially supported by the Spanish CICyT projects, FIS2009-07812, Consolider CSD2007-046, MAT2009-010350 and PROMETEO/2010/043.Shabir, Q.; Pokale, A.; Loni, A.; Johnson, DR.; Canham, L.; Fenollosa Esteve, R.; Tymczenko, MK.... (2011). Medically Biodegradable Hydrogenated Amorphous Silicon Microspheres. Silicon. 3(4):173-176. https://doi.org/10.1007/s12633-011-9097-4S17317634Salonen J, Kaukonen AM, Hirvonen J, Lehto VP (2008) J Pharmaceutics 97:632–53Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Adv Drug Deliv Rev 60:1266–77O’Farrell N, Houlton A, Horrocks BR (2006) Int J Nanomedicine 1:451–72Canham LT (1995) Adv Mater 7:1037, PCT patent WO 97/06101,1999Park JH, Gui L, Malzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Nature Mater 8:331–6Cullis AG, Canham LT, Calcott PDJ (1997) J Appl Phys 82:909–66Canham LT, Reeves CR (1996) Mat Res Soc Symp 414:189–90Edell DJ, Toi VV, McNeil VM, Clark LD (1992) IEEE Trans Biomed Eng 39:635–43Fenollosa R, Meseguer F, Tymczenko M (2008) Adv Mater 20:95Fenollosa R, Meseguer F, Tymczenko M, Spanish Patent P200701681, 2007Pell LE, Schricker AD, Mikulec FV, Korgel BA (2004) Langmuir 20:6546XifrĂ©-Perez E, Fenollosa R, Meseguer F (2011) Opt Express 19:3455–63Fenollosa R, Ramiro-Manzano F, Tymczenko M, Meseguer F (2010) J Mater Chem 20:5210XifrĂ©-PĂ©rez E, Domenech JD, Fenollosa R, Muñoz P, Capmany J, Meseguer F (2011) Opt Express 19–4:3185–92Rodriguez I, Fenollosa R, Meseguer F, Cosmetics & Toiletries 2010;42–49Ramiro-Manzano F, Fenollosa R, XifrĂ©-PĂ©rez E, GarĂ­n M, Meseguer F (2011) Adv Mater 23:3022–3025. doi: 10.1002/adma.201100986Iler RK (1979) Chemistry of silica: solubility, polymerization, colloid & surface properties & biochemistry. Wiley, New YorkTanaka K, Maruyama E, Shimado T, Okamoto H (1999) Amorphous silicon. Wiley, New York, NYPatterson AL (1939) Phys Rev 56:978–82Canham LT, Reeves CL, King DO, Branfield PJ, Gabb JG, Ward MC (1996) Adv Mater 8:850–2Iler RK In: Chemistry of silica: solubility, polymerization, colloid & surface properties &Biochemistry. Wiley, New York, NYFinnie KS, Waller DJ, Perret FL, Krause-Heuer AM, Lin HQ, Hanna JV, Barbe CJ (2009) J Sol-Gel Technol 49:12–8Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–36Fan D, Akkaraju GR, Couch EF, Canham LT, Coffer JL (2010) Nanoscale 1:354–61Tasciotti E, Godin B, Martinez JO, Chiappini C, Bhavane R, Liu X, Ferrari M (2011) Mol Imaging 10:56–

    Molecular therapy for the treatment of hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Conventional cytotoxic chemotherapy has failed to show a substantial benefit for patients with HCC. Recently, a number of new drugs targeting molecular mechanisms involved in liver cell transformation have entered into clinical trials and led to encouraging results. In this review we summarise this data and point to a number of new compounds, which are currently being tested and can potentially broaden our therapeutic arsenal even further

    Valuing nature’s contributions to people: the IPBES approach

    Get PDF
    Nature is perceived and valued in starkly different and often conflicting ways. This paper presents the rationale for the inclusive valuation of nature’s contributions to people (NCP) in decision making, as well as broad methodological steps for doing so. While developed within the context of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), this approach is more widely applicable to initiatives at the knowledge–policy interface, which require a pluralistic approach to recognizing the diversity of values. We argue that transformative practices aiming at sustainable futures would benefit from embracing such diversity, which require recognizing and addressing power relationships across stakeholder groups that hold different values on human nature-relations and NCP
    • 

    corecore