252 research outputs found

    Ruthenium polypyridyl complexes and their modes of interaction with DNA : is there a correlation between these interactions and the antitumor activity of the compounds?

    Get PDF
    Various interaction modes between a group of six ruthenium polypyridyl complexes and DNA have been studied using a number of spectroscopic techniques. Five mononuclear species were selected with formula [Ru(tpy) L1L2](2-n)?, and one closely related dinuclear cation of formula [{Ru(apy)(tpy)}2{l-H2N(CH2)6NH2}]4?. The ligand tpy is 2,20:60,200-terpyridine and the ligand L1 is a bidentate ligand, namely, apy (2,20-azobispyridine), 2-phenylazopyridine, or 2-phenylpyridinylmethylene amine. The ligand L2 is a labile monodentate ligand, being Cl-, H2O, or CH3CN. All six species containing a labile L2 were found to be able to coordinate to the DNA model base 9-ethylguanine by 1H NMR and mass spectrometry. The dinuclear cationic species, which has no positions available for coordination to a DNA base, was studied for comparison purposes. The interactions between a selection of four representative complexes and calf-thymus DNA were studied by circular and linear dichroism. To explore a possible relation between DNA-binding ability and toxicity, all compounds were screened for anticancer activity in a variety of cancer cell lines, showing in some cases an activity which is comparable to that of cisplatin. Comparison of the details of the compound structures, their DNA binding, and their toxicity allows the exploration of structure–activity relationships that might be used to guide optimization of the activity of agents of this class of compounds

    Weight Gain Is Associated with Medial Contact Site of Subthalamic Stimulation in Parkinson's Disease

    Get PDF
    The aim of our study was to assess changes in body-weight in relation to active electrode contact position in the subthalamic nucleus. Regular body weight measurements were done in 20 patients with advanced Parkinson's disease within a period of 18 months after implantation. T1-weighted (1.5T) magnetic resonance images were used to determine electrode position in the subthalamic nucleus and the Unified Parkinson's disease rating scale (UPDRS-III) was used for motor assessment. The distance of the contacts from the wall of the third ventricle in the mediolateral direction inversely correlated with weight gain (r = −0.55, p<0.01) and with neurostimulation-related motor condition expressed as the contralateral hemi-body UPDRS-III (r = −0.42, p<0.01). Patients with at least one contact within 9.3 mm of the wall experienced significantly greater weight gain (9.4±(SD)4.4 kg, N = 11) than those with both contacts located laterally (3.9±2.7 kg, N = 9) (p<0.001). The position of the active contact is critical not only for motor outcome but is also associated with weight gain, suggesting a regional effect of subthalamic stimulation on adjacent structures involved in the central regulation of energy balance, food intake or reward

    Soil Food Web Changes during Spontaneous Succession at Post Mining Sites: A Possible Ecosystem Engineering Effect on Food Web Organization?

    Get PDF
    Lagomorphs (a group that consists of pikas, hares, rabbits and allies) are notable for their conservative morphology retained for most of their over 50 million years evolutionary history. On the other hand, their remarkable morphological uniformity partly stems from a considerable number of homoplasies in cranial and dental structures that hamper phylogenetic analyses. The premolar foramen, an opening in the palate of lagomorphs, has been characterized as an important synapomorphy of one clade, Ochotonidae (pikas). Within Lagomorpha, however, its phylogenetic distribution is much wider, the foramen being present not only in all ochotonids but also in leporids and stem taxa; its morphology and incidence also varies considerably across the order, even intraspecifically. In this study, we provide a broad survey of the taxonomic distribution of the premolar foramen in extant and fossil Lagomorpha and describe in detail the morphological variation of this character within the group. Micro-computed tomography was used to examine the hard palate and infraorbital groove morphology in Poelagus (Leporidae) and Ochotona. Scans revealed the course and contacts of the canal behind the premolar foramen and structural differences between the two crown clades. We propose that the premolar foramen has evolved independently in several lineages of Lagomorpha, and we discuss development and function of this foramen in the lagomorph skull. This study shows the importance of comprehensive studies on phylogenetically informative non-dental characters in Lagomorpha

    Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia

    Get PDF
    Precise classification of acute leukemia (AL) is crucial for adequate treatment. EuroFlow has previously designed an AL orientation tube (ALOT) to guide towards the relevant classification panel (T-cell acute lymphoblastic leukemia (T-ALL), B-cell precursor (BCP)-ALL and/or acute myeloid leukemia (AML)) and final diagnosis. Now we built a reference database with 656 typical AL samples (145 T-ALL, 377 BCP-ALL, 134 AML), processed and analyzed via standardized protocols. Using principal component analysis (PCA)-based plots and automated classification algorithms for direct comparison of single-cells from individual patients against the database, another 783 cases were subsequently evaluated. Depending on the database-guided results, patients were categorized as: (i) typical T, B or Myeloid without or; (ii) with a transitional component to another lineage; (iii) atypical; or (iv) mixed-lineage. Using this automated algorithm, in 781/783 cases (99.7%) the right panel was selected, and data comparable to the final WHO-diagnosis was already provided in >93% of cases (85% T-ALL, 97% BCP-ALL, 95% AML and 87% mixed-phenotype AL patients), even without data on the full-characterization panels. Our results show that database-guided analysis facilitates standardized interpretation of ALOT results and allows accurate selection of the relevant classification panels, hence providing a solid basis for designing future WHO AL classifications

    Attenuation of the Sensing Capabilities of PhoQ in Transition to Obligate Insect–Bacterial Association

    Get PDF
    Sodalis glossinidius, a maternally inherited endosymbiont of the tsetse fly, maintains genes encoding homologues of the PhoP-PhoQ two-component regulatory system. This two-component system has been extensively studied in facultative bacterial pathogens and is known to serve as an environmental magnesium sensor and a regulator of key virulence determinants. In the current study, we show that the inactivation of the response regulator, phoP, renders S. glossinidius sensitive to insect derived cationic antimicrobial peptides (AMPs). The resulting mutant strain displays reduced expression of genes involved in the structural modification of lipid A that facilitates resistance to AMPs. In addition, the inactivation of phoP alters the expression of type-III secretion system (TTSS) genes encoded within three distinct chromosomal regions, indicating that PhoP-PhoQ also serves as a master regulator of TTSS gene expression. In the absence of phoP, S. glossinidius is unable to superinfect either its natural tsetse fly host or a closely related hippoboscid louse fly. Furthermore, we show that the S. glossinidius PhoQ sensor kinase has undergone functional adaptations that result in a substantially diminished ability to sense ancestral signals. The loss of PhoQ's sensory capability is predicted to represent a novel adaptation to the static symbiotic lifestyle, allowing S. glossinidius to constitutively express genes that facilitate resistance to host derived AMPs

    Navigating institutional pressure in state-socialist and democratic regimes: The case of movement brontosaurus

    Get PDF
    Using the case of Movement Brontosaurus, a Czech organization founded in state socialist times, this article investigates how civic associations and nongovernmental organizations seeking to promote alternatives to the status quo respond to institutional pressures in different political and social contexts. The case shows that under state socialism, Brontosaurus appeared to conform to state mandates and societal expectations. However, its formal structure was decoupled from many activities to obscure its oppositional intent.After the transition to democracy, the organization was only able to maintain its place in society after it aligned its structure and practices with each other and openly expressed its alternative agenda. The findings demonstrate how social change and alternative lifestyle organizations vary their responses to institutional pressure in ways that enable them to realize their values and pursue their missions while accounting for the political and social contexts in which they are embedded

    γ-Tubulin 2 Nucleates Microtubules and Is Downregulated in Mouse Early Embryogenesis

    Get PDF
    γ-Tubulin is the key protein for microtubule nucleation. Duplication of the γ-tubulin gene occurred several times during evolution, and in mammals γ-tubulin genes encode proteins which share ∼97% sequence identity. Previous analysis of Tubg1 and Tubg2 knock-out mice has suggested that γ-tubulins are not functionally equivalent. Tubg1 knock-out mice died at the blastocyst stage, whereas Tubg2 knock-out mice developed normally and were fertile. It was proposed that γ-tubulin 1 represents ubiquitous γ-tubulin, while γ-tubulin 2 may have some specific functions and cannot substitute for γ-tubulin 1 deficiency in blastocysts. The molecular basis of the suggested functional difference between γ-tubulins remains unknown. Here we show that exogenous γ-tubulin 2 is targeted to centrosomes and interacts with γ-tubulin complex proteins 2 and 4. Depletion of γ-tubulin 1 by RNAi in U2OS cells causes impaired microtubule nucleation and metaphase arrest. Wild-type phenotype in γ-tubulin 1-depleted cells is restored by expression of exogenous mouse or human γ-tubulin 2. Further, we show at both mRNA and protein levels using RT-qPCR and 2D-PAGE, respectively, that in contrast to Tubg1, the Tubg2 expression is dramatically reduced in mouse blastocysts. This indicates that γ-tubulin 2 cannot rescue γ-tubulin 1 deficiency in knock-out blastocysts, owing to its very low amount. The combined data suggest that γ-tubulin 2 is able to nucleate microtubules and substitute for γ-tubulin 1. We propose that mammalian γ-tubulins are functionally redundant with respect to the nucleation activity

    Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides

    Get PDF
    BACKGROUND: The alpha-7 nicotinic acetylcholine receptor (alpha7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the alpha7-nAChR, or peptide modulation of receptor expression. METHODOLOGY/PRINCIPAL FINDINGS: This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the alpha7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of alpha7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. CONCLUSIONS/SIGNIFICANCE: The results reported here demonstrate a hitherto unknown relationship between the alpha7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration
    corecore