1,049 research outputs found

    KMOS view of the Galactic Centre - II. Metallicity distribution of late-type stars

    Get PDF
    Knowing the metallicity distribution of stars in the Galactic Centre has important implications for the formation history of the Milky Way nuclear star cluster. However, this distribution is not well known, and is currently based on a small sample of fewer than 100 stars. We obtained near-infrared K-band spectra of more than 700 late-type stars in the central 4 pc^2 of the Milky Way nuclear star cluster with the integral-field spectrograph KMOS (VLT). We analyse the medium-resolution spectra using a full-spectral fitting method employing the G\"ottingen Spectral library of synthetic PHOENIX spectra. The derived stellar metallicities range from metal-rich [M/H]>+0.3 dex to metal-poor [M/H]<-1.0 dex, with a fraction of 5.2(^{+6.0}+{-3.1}) per cent metal-poor ([M/H]<-0.5 dex) stars. The metal-poor stars are distributed over the entire observed field. The origin of metal-poor stars remains unclear. They could originate from infalling globular clusters. For the metal-rich stellar population ([M/H]>0 dex) a globular cluster origin can be ruled out. As there is only a very low fraction of metal-poor stars in the central 4 pc^2 of the Galactic Centre, we believe that our data can discard a scenario in which the Milky Way nuclear star cluster is purely formed from infalling globular clusters.Comment: 18 pages, 9 Figures, accepted for publication in MNRA

    Triaxial orbit-based modelling of the Milky Way Nuclear Star Cluster

    Get PDF
    We construct triaxial dynamical models for the Milky Way nuclear star cluster using Schwarzschild's orbit superposition technique. We fit the stellar kinematic maps presented in Feldmeier et al. (2014). The models are used to constrain the supermassive black hole mass M_BH, dynamical mass-to-light ratio M/L, and the intrinsic shape of the cluster. Our best-fitting model has M_BH = (3.0 +1.1 -1.3)x10^6 M_sun, M/L = (0.90 +0.76 -0.08) M_sun/L_{sun,4.5micron}, and a compression of the cluster along the line-of-sight. Our results are in agreement with the direct measurement of the supermassive black hole mass using the motion of stars on Keplerian orbits. The mass-to-light ratio is consistent with stellar population studies of other galaxies in the mid-infrared. It is possible that we underestimate M_BH and overestimate the cluster's triaxiality due to observational effects. The spatially semi-resolved kinematic data and extinction within the nuclear star cluster bias the observations to the near side of the cluster, and may appear as a compression of the nuclear star cluster along the line-of-sight. We derive a total dynamical mass for the Milky Way nuclear star cluster of M_MWNSC = (2.1 +-0.7)x10^7 M_sun within a sphere with radius r = 2 x r_eff = 8.4 pc. The best-fitting model is tangentially anisotropic in the central r = 0.5-2 pc of the nuclear star cluster, but close to isotropic at larger radii. Our triaxial models are able to recover complex kinematic substructures in the velocity map.Comment: 14 pages, 10 figures. Accepted for publication in MNRA

    An Upper Limit on the Mass of a Central Black Hole in the Large Magellanic Cloud from the Stellar Rotation Field

    Get PDF
    We constrain the possible presence of a central black hole (BH) in the center of the Large Magellanic Cloud (LMC). This requires spectroscopic measurements over an area of order a square degree, due to the poorly known position of the kinematic center. Such measurements are now possible with the impressive field of view of the Multi Unit Spectroscopic Explorer (MUSE) on the ESO Very Large Telescope. We used the Calcium Triplet (~850nm) spectral lines in many short-exposure MUSE pointings to create a two-dimensional integrated-light line-of-sight velocity map from the ~10810^8 individual spectra, taking care to identify and remove Galactic foreground populations. The data reveal a clear velocity gradient at an unprecedented spatial resolution of 1 arcmin2^{2}. We fit kinematic models to arrive at a 3σ3\sigma upper-mass-limit of 107.110^{7.1} MSun_{Sun} for any central BH - consistent with the known scaling relations for supermassive black holes and their host systems. This adds to the growing body of knowledge on the presence of BHs in low-mass and dwarf galaxies, and their scaling relations with host-galaxy properties, which can shed light on theories of BH growth and host system interaction.Comment: 12 pages, 11 figures, 1 table, ApJ - in pres

    Large scale kinematics and dynamical modelling of the Milky Way nuclear star cluster

    Get PDF
    Within the central 10pc of our Galaxy lies a dense nuclear star cluster (NSC), and similar NSCs are found in most nearby galaxies. Studying the structure and kinematics of NSCs reveals the history of mass accretion of galaxy nuclei. Because the Milky Way (MW) NSC is at a distance of only 8kpc, we can spatially resolve the MWNSC on sub-pc scales. This makes the MWNSC a reference object for understanding the formation of all NSCs. We have used the NIR long-slit spectrograph ISAAC (VLT) in a drift-scan to construct an integral-field spectroscopic map of the central 9.5 x 8pc of our Galaxy. We use this data set to extract stellar kinematics both of individual stars and from the unresolved integrated light spectrum. We present a velocity and dispersion map from the integrated light and model these kinematics using kinemetry and axisymmetric Jeans models. We also measure CO bandhead strengths of 1,375 spectra from individual stars. We find kinematic complexity in the NSCs radial velocity map including a misalignment of the kinematic position angle by 9 degree counterclockwise relative to the Galactic plane, and indications for a rotating substructure perpendicular to the Galactic plane at a radius of 20" or 0.8pc. We determine the mass of the NSC within r = 4.2pc to 1.4 x 10^7 Msun. We also show that our kinematic data results in a significant underestimation of the supermassive black hole (SMBH) mass. The kinematic substructure and position angle misalignment may hint at distinct accretion events. This indicates that the MWNSC grew at least partly by the mergers of massive star clusters. Compared to other NSCs, the MWNSC is on the compact side of the r_eff - M_NSC relation. The underestimation of the SMBH mass might be caused by the kinematic misalignment and a stellar population gradient. But it is also possible that there is a bias in SMBH mass measurements obtained with integrated light.Comment: 20 pages, 19 Figures, Accepted for publication in A&

    KMOS view of the Galactic Centre I. Young stars are centrally concentrated

    Get PDF
    The Galactic centre hosts a crowded, dense nuclear star cluster with a half-light radius of 4 pc. Most of the stars in the Galactic centre are cool late-type stars, but there are also >100 hot early-type stars in the central parsec of the Milky Way. These stars are only 3-8 Myr old. Our knowledge of the number and distribution of early-type stars in the Galactic centre is incomplete. Only a few spectroscopic observations have been made beyond a projected distance of 0.5 pc of the Galactic centre. The distribution and kinematics of early-type stars are essential to understand the formation and growth of the nuclear star cluster. We cover the central >4pc^2 of the Galactic centre using the integral-field spectrograph KMOS. We extracted more than 1,000 spectra from individual stars and identified early-type stars based on their spectra. Our data set contains 114 bright early-type stars: 6 have narrow emission lines, 23 are Wolf-Rayet stars, 9 stars have featureless spectra, and 76 are O/B type stars. Our wide-field spectroscopic data confirm that the distribution of young stars is compact, with 90% of the young stars identified within 0.5 pc of the nucleus. We identify 24 new O/B stars primarily at large radii. We estimate photometric masses of the O/B stars and show that the total mass in the young population is >12,000M_sun. The O/B stars all appear to be bound to the Milky Way nuclear star cluster, while less than 30% belong to the clockwise rotating disk. The central concentration of the early-type stars is a strong argument that they have formed in situ. A large part of the young O/B stars is not on the disk, which either means that the early-type stars did not all form on the same disk or that the disk is dissolving rapidly. [abridged]Comment: 27 pages, 17 figures, matches journal version: Corrected typos, corrected Notes in Table B.

    Temperature dependence of viscosity, relaxation times (T1, T2) and simulated contrast for potential perfusates in post-mortem MR angiography (PMMRA).

    Get PDF
    Developments in post-mortem imaging increasingly focus on addressing recognised diagnostic weaknesses, especially with regard to suspected natural deaths. Post-mortem MR angiography (PMMRA) may offer additional diagnostic information to help address such weaknesses, specifically in the context of sudden cardiac death. Complete filling of the coronary arteries and acceptable contrast with surrounding tissue are essential for a successful approach to PMMRA. In this work, the suitability of different liquids for inclusion in a targeted PMMRA protocol was evaluated. Factors influencing cooling of paraffinum liquidum + Angiofil® (6 %) in cadavers during routine multiphase post-mortem CT angiography were investigated. The temperature dependence of dynamic viscosity (8-20 °C), longitudinal (T1) and transverse (T2) relaxation (1-23 °C) of the proposed liquids was quadratically modelled. The relaxation behaviour of these liquids and MR scan parameters were further investigated by simulation of a radiofrequency (RF)-spoiled gradient echo (GRE) sequence to estimate potentially achievable contrast between liquids and post-mortem tissue at different temperatures across a forensically relevant temperature range. Analysis of the established models and simulations indicated that based on dynamic viscosity (27-33 mPa · s), short T1 relaxation times (155-207 ms) and a minimal temperature dependence over the investigated range of these parameters, paraffin oil and a solution of paraffin oil + Angiofil® (6 %) would be most suitable for post-mortem reperfusion and examination in MRI

    Disentangling the Circumnuclear Environs of Centaurus A: III. An Inner Molecular Ring, Nuclear Shocks and the CO to warm H2 interface

    Get PDF
    We present the distribution and kinematics of the molecular gas in the circumnuclear disk (CND, 400 pc x 200 pc) of Centaurus A with resolutions of ~5 pc (0.3 arcsec) and shed light onto the mechanism feeding the Active Galactic Nucleus (AGN) using CO(3-2), HCO+(4-3), HCN(4-3), and CO(6-5) observations obtained with ALMA. Multiple filaments or streamers of tens to a hundred parsec scale exist within the CND, which form a ring-like structure with an unprojected diameter of 9 x 6 arcsec (162pc x 108pc) and a position angle PA = 155deg. Inside the nuclear ring, there are two leading and straight filamentary structures with lengths of about 30-60pc at PA = 120deg on opposite sides of the AGN, with a rotational symmetry of 180deg and steeper position-velocity diagrams, which are interpreted as nuclear shocks due to non-circular motions. Along the filaments, and unlike other nearby AGNs, several dense molecular clumps present low HCN/HCO+(4-3) ratios (~0.5). The filaments abruptly end in the probed transitions at r = 20pc from the AGN, but previous near-IR H2 (J=1-0) S(1) maps show that they continue in an even ~1000 K), winding up in the form of nuclear spirals, and forming an inner ring structure with another set of symmetric filaments along the N-S direction and within r = 10pc. The molecular gas is governed primarily by non-circular motions, being the successive shock fronts at different scales where loss of angular momentum occurs, a mechanism which may feed efficiently powerful radio galaxies down to parsec scales.Comment: 46 pages. Accepted for publication in Ap
    corecore