4,346 research outputs found

    Interaction of point sources and vortices for incompressible planar fluids

    Full text link
    We consider a new system of differential equations which is at the same time gradient and locally Hamiltonian. It is obtained by just replacing a factor in the equations of interaction for N point vortices, and it is interpreted as an interaction of N point sources. Because of the local Hamiltonian structure and the symmetries it obeys, it does possess some of the first integrals that appear in the N vortex problem. We will show that binary collisions are easily blown up in this case since the equations of motion are of first order. This method may be easily generalized to the blow up of higher order collisions. We then generalize the model further to interactions of sources and vortices.Comment: 9 page

    Estimation of the material budget of the LHCb detector

    Get PDF
    The material budget of the LHCb detector at the time of the DC 06 data challenge is estimated

    Dynamics of Conformal Maps for a Class of Non-Laplacian Growth Phenomena

    Full text link
    Time-dependent conformal maps are used to model a class of growth phenomena limited by coupled non-Laplacian transport processes, such as nonlinear diffusion, advection, and electro-migration. Both continuous and stochastic dynamics are described by generalizing conformal-mapping techniques for viscous fingering and diffusion-limited aggregation, respectively. A general notion of time in stochastic growth is also introduced. The theory is applied to simulations of advection-diffusion-limited aggregation in a background potential flow. A universal crossover in morphology is observed from diffusion-limited to advection-limited fractal patterns with an associated crossover in the growth rate, controlled by a time-dependent effective Peclet number. Remarkably, the fractal dimension is not affected by advection, in spite of dramatic increases in anisotropy and growth rate, due to the persistence of diffusion limitation at small scales.Comment: 4 pages, 2 figures (six color plates

    Two-way coupling of FENE dumbbells with a turbulent shear flow

    Full text link
    We present numerical studies for finitely extensible nonlinear elastic (FENE) dumbbells which are dispersed in a turbulent plane shear flow at moderate Reynolds number. The polymer ensemble is described on the mesoscopic level by a set of stochastic ordinary differential equations with Brownian noise. The dynamics of the Newtonian solvent is determined by the Navier-Stokes equations. Momentum transfer of the dumbbells with the solvent is implemented by an additional volume forcing term in the Navier-Stokes equations, such that both components of the resulting viscoelastic fluid are connected by a two-way coupling. The dynamics of the dumbbells is given then by Newton's second law of motion including small inertia effects. We investigate the dynamics of the flow for different degrees of dumbbell elasticity and inertia, as given by Weissenberg and Stokes numbers, respectively. For the parameters accessible in our study, the magnitude of the feedback of the polymers on the macroscopic properties of turbulence remains small as quantified by the global energy budget and the Reynolds stresses. A reduction of the turbulent drag by up to 20% is observed for the larger particle inertia. The angular statistics of the dumbbells shows an increasing alignment with the mean flow direction for both, increasing elasticity and inertia. This goes in line with a growing asymmetry of the probability density function of the transverse derivative of the streamwise turbulent velocity component. We find that dumbbells get stretched referentially in regions where vortex stretching or bi-axial strain dominate the local dynamics and topology of the velocity gradient tensor.Comment: 20 pages, 10 Postscript figures (Figures 5 and 10 in reduced quality

    Analytic structure of the S-matrix for singular quantum mechanics

    Get PDF
    The analytic structure of the S-matrix of singular quantum mechanics is examined within a multichannel framework, with primary focus on its dependence with respect to a parameter (Ω) that determines the boundary conditions. Specifically, a characterization is given in terms of salient mathematical and physical properties governing its behavior. These properties involve unitarity and associated current-conserving Wronskian relations, time-reversal invariance, and Blaschke factorization. The approach leads to an interpretation of effective nonunitary solutions in singular quantum mechanics and their determination from the unitary family.Fil: Camblong, Horacio E.. University of San Francisco; Estados UnidosFil: Epele, Luis Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física. Laboratorio de Física Teórica; ArgentinaFil: Fanchiotti, Huner. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física. Laboratorio de Física Teórica; ArgentinaFil: García Canal, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física. Laboratorio de Física Teórica; Argentin

    The initial development of a jet caused by fluid, body and free surface interaction with a uniformly accelerated advancing or retreating plate. Part 1. The principal flow

    Get PDF
    The free surface and flow field structure generated by the uniform acceleration (with dimensionless acceleration σ) of a rigid plate, inclined at an angle α ∈ (0, π/2) to the exterior horizontal, as it advances (σ > 0) or retreats (σ < 0) from an initially stationary and horizontal strip of inviscid, incompressible fluid under gravity, are studied in the small-time limit via the method of matched asymptotic expansions. This work generalises the case of a uniformly accelerating plate advancing into a fluid as studied in Needham et al. (2008). Particular attention is paid to the innermost asymptotic regions encompassing the initial interaction between the plate and the free surface. We find that the structure of the solution to the governing initial boundary value problem is characterised in terms of the parameters α and ÎŒ (where ÎŒ = 1+σ tan α), with a bifurcation in structure as ÎŒ changes sign. This bifurcation in structure leads us to question the well-posedness and stability of the governing initial boundary value problem with respect to small perturbations in initial data in the innermost asymptotic regions, the discussion of which will be presented in the companion paper Gallagher et al. (2016) . In particular, when (α, ÎŒ) ∈ (0, π/2) × R+, the free surface close to the initial contact point remains monotone, and encompasses a swelling jet when (α, ÎŒ) ∈ (0, π/2)×[1,∞), or a collapsing jet when (α, ÎŒ) ∈ (0, π/2) × (0, 1). However, when (α, ÎŒ) ∈ (0, π/2) × R−, the collapsing jet develops a more complex structure, with the free surface close to the initial contact point now developing a finite number of local oscillations, with near resonance type behaviour occurring close to a countable set of critical plate angles α = α∗n ∈ (0, π/2) (n = 1, 2, . . .)

    Superantenna made of transformation media

    Full text link
    We show how transformation media can make a superantenna that is either completely invisible or focuses incoming light into a needle-sharp beam. Our idea is based on representating three-dimensional space as a foliage of sheets and performing two-dimensional conformal maps on each shee

    Overcharging a Black Hole and Cosmic Censorship

    Get PDF
    We show that, contrary to a widespread belief, one can overcharge a near extremal Reissner-Nordstrom black hole by throwing in a charged particle, as long as the backreaction effects may be considered negligible. Furthermore, we find that we can make the particle's classical radius, mass, and charge, as well as the relative size of the backreaction terms arbitrarily small, by adjusting the parameters corresponding to the particle appropriately. This suggests that the question of cosmic censorship is still not wholly resolved even in this simple scenario. We contrast this with attempting to overcharge a black hole with a charged imploding shell, where we find that cosmic censorship is upheld. We also briefly comment on a number of possible extensions.Comment: 26 pages, 3 figures, LaTe

    Attacking Group Protocols by Refuting Incorrect Inductive Conjectures

    Get PDF
    Automated tools for finding attacks on flawed security protocols often fail to deal adequately with group protocols. This is because the abstractions made to improve performance on fixed 2 or 3 party protocols either preclude the modelling of group protocols all together, or permit modelling only in a fixed scenario, which can prevent attacks from being discovered. This paper describes Coral, a tool for finding counterexamples to incorrect inductive conjectures, which we have used to model protocols for both group key agreement and group key management, without any restrictions on the scenario. We will show how we used Coral to discover 6 previously unknown attacks on 3 group protocols
    • 

    corecore