Time-dependent conformal maps are used to model a class of growth phenomena
limited by coupled non-Laplacian transport processes, such as nonlinear
diffusion, advection, and electro-migration. Both continuous and stochastic
dynamics are described by generalizing conformal-mapping techniques for viscous
fingering and diffusion-limited aggregation, respectively. A general notion of
time in stochastic growth is also introduced. The theory is applied to
simulations of advection-diffusion-limited aggregation in a background
potential flow. A universal crossover in morphology is observed from
diffusion-limited to advection-limited fractal patterns with an associated
crossover in the growth rate, controlled by a time-dependent effective Peclet
number. Remarkably, the fractal dimension is not affected by advection, in
spite of dramatic increases in anisotropy and growth rate, due to the
persistence of diffusion limitation at small scales.Comment: 4 pages, 2 figures (six color plates