114 research outputs found

    Holographic Screening Length in a Hot Plasma of Two Sphere

    Full text link
    We study the screening length of a quark-antiquark pair moving in a hot plasma living in two sphere S2S^2 manifold using AdS/CFT correspondence where the background metric is four dimensional Schwarzschild-AdS black hole. The geodesic solution of the string ends at the boundary is given by a stationary motion in the equatorial plane as such the separation length LL of quark-antiquark pair is parallel to the angular velocity ω\omega. The screening length and the bound energy are computed numerically using Mathematica. We find that the plots are bounded from below by some functions related to the momentum transfer PcP_c of the drag force configuration. We compare the result by computing the screening length in the quark-antiquark reference frame where the gravity dual are "Boost-AdS" and Kerr-AdS black holes. Finding relations of the parameters of both black holes, we argue that the relation between mass parameters MSchM_{Sch} of the Schwarzschild-AdS black hole and MKerrM_{Kerr} of the Kerr-AdS black hole in high temperature is given by MKerr=MSch(1a2l2)3/2M_{Kerr}=M_{Sch}(1-a^2l^2)^{3/2}, where aa is the angular momentum parameter.Comment: Major revision: title changed, adding authors, 13 pages, 8 figures, etc. Accepted for publication in European Physical Journal

    Entropy for Asymptotically AdS_3 Black Holes

    Full text link
    We propose that Strominger's method to derive the BTZ black hole entropy is in fact applicable to other asymptotically AdS_3 black holes and gives the correct functional form of entropies. We discuss various solutions in the Einstein-Maxwell theory, dilaton gravity, Einstein-scalar theories, and Einstein-Maxwell-dilaton theory. In some cases, solutions approach AdS_3 asymptotically, but their entropies do not have the form of Cardy's formula. However, it turns out that they are actually not "asymptotically AdS3AdS_3" solutions. On the other hand, for truly asymptotically AdS_3 solutions, their entropies have the form of Cardy's formula. In this sense, all known solutions are consistent with our proposal.Comment: 21 pages, LaTeX; v2: added discussion for section 3.

    Towards black hole scattering

    Full text link
    We study black holes in three-dimensional Chern-Simons gravity with a negative cosmological constant. In particular, we identify how the Chern-Simons interactions between a scattering particle and a black hole project the particle wavefunction onto a wavefunction in the black hole background. We also analyze the set of space-times that should be allowed in the theory and the way in which boundary conditions affect the spectrum of space-times.Comment: 12 pages, v2: reference added, typos correcte

    On Classical Equivalence Between Noncritical and Einstein Gravity : The AdS/CFT Perspectives

    Full text link
    We find that noncritical gravity, a special class of higher derivative gravity, is classically equivalent to Einstein gravity at the full nonlinear level. We obtain the viscosity-to-entropy ratio and the second order transport coefficients of the dual fluid of noncritical gravity to all orders in the coupling of higher derivative terms. We also compute the holographic entanglement entropy in the dual CFT of noncritical gravity. All these results confirm the nonlinear equivalence between noncritical gravity and Einstein gravity at the classical level.Comment: 19 pages, no figure

    Higher spin fermions in the BTZ black hole

    Full text link
    Recently it has been shown that the wave equations of bosonic higher spin fields in the BTZ background can be solved exactly. In this work we extend this analysis to fermionic higher spin fields. We solve the wave equations for arbitrary half-integer spin fields in the BTZ black hole background and obtain exact expressions for their quasinormal modes. These quasinormal modes are shown to agree precisely with the poles of the corresponding two point function in the dual conformal field theory as predicted by the AdS/CFT correspondence. We also obtain an expression for the 1-loop determinant in terms of the quasinormal modes and show it agrees with that obtained by integrating the heat kernel found by group theoretic methods.Comment: 29 page

    Three-Dimensional Gravity with Conformal Scalar and Asymptotic Virasoro Algebra

    Get PDF
    Strominger has derived the Bekenstein-Hawking entropy of the BTZ black hole using asymptotic Virasoro algebra. We apply Strominger's method to a black hole solution found by Martinez and Zanelli (MZ). This is a solution of three-dimensional gravity with a conformal scalar field. The solution is not AdS3AdS_3, but it is asymptotically AdS3AdS_3; therefore, it has the asymptotic Virasoro algebra. We compute the central charge for the theory and compares Cardy's formula with the Bekenstein-Hawking entropy. It turns out that the functional form does agree, but the overall numerical coefficient does not. This is because this approach gives the "maximum possible entropy" for the numerical coefficient.Comment: 26 pages, LaTeX; v2: minor correction

    Exact SU(2)*U(1) Stringy Black Holes

    Get PDF
    Extreme magnetic dilaton black holes are promoted to exact solutions of heterotic string theory with unbroken supersymmetry. With account taken of alpha' corrections this is accomplished by supplementing the known solutions with SU(2) Yang-Mills vectors and scalars in addition to the already existing Abelian U(1) vector field. The solution has a simple analytic form and includes multi-black-holes. The issue of exactness of other black-hole-type solutions, including extreme dilaton electrically charged black holes and Taub-NUT solutions is discussed.Comment: 10 pages, SU-ITP-94-27 and QMW-PH-94-34 (version accepted for publication in Phys. Rev., contains a discussion of (4.1) supersymmetry of the black hole sigma model

    Degrees of freedom in two dimensional string theory

    Get PDF
    We discuss two issues regarding the question of degrees of freedom in two dimensional string theory. The first issue relates to the classical limit of quantum string theory. In the classical theory one requires an infinite number of fields in addition to the collective field to describe ``folds'' on the fermi surface. We argue that in the quantum theory these are not additional degrees of freedom. Rather they represent quantum dispersions of the collective field which are {\em not} suppressed when 0\hbar \rightarrow 0 whenever a fold is present, thus leading to a nontrivial classical limit. The second issue relates to the ultraviolet properties of the geometric entropy. We argue that the geometric entropy is finite in the ultraviolet due to {\em nonperturbative} effects. This indicates that the true degrees of freedom of the two dimensional string at high energies is much smaller than what one naively expects. (Based on talks at Spring Workshop on String theory and Quantum Gravity, ICTP, Trieste, March 1995 and VIIth Regional Conference on Mathematical Physics, Bandar-Anzali, October 1995.)Comment: 18 pages, LaTe

    Low temperature properties of holographic condensates

    Full text link
    In the current work we study various models of holographic superconductors at low temperature. Generically the zero temperature limit of those models are solitonic solution with a zero sized horizon. Here we generalized simple version of those zero temperature solutions to small but non-zero temperature T. We confine ourselves to cases where near horizon geometry is AdS^4. At a non-zero temperature a small horizon would form deep inside this AdS^4 which does not disturb the UV physics. The resulting geometry may be matched with the zero temperature solution at an intermediate length scale. We understand this matching from separation of scales by setting up a perturbative expansion in gauge potential. We have a better analytic control in abelian case and quantities may be expressed in terms of hypergeometric function. From this we calculate low temperature behavior of various quatities like entropy, charge density and specific heat etc. We also calculate various energy gaps associated with p-wave holographic superconductor to understand the underlying pairing mechanism. The result deviates significantly from the corresponding weak coupling BCS counterpart.Comment: 17 Page

    Extremal black holes as exact string solutions

    Full text link
    We show that the leading order solution describing an extremal electrically charged black hole in string theory is, in fact, an exact solution to all orders in \a' when interpreted in a Kaluza-Klein fashion. This follows from the observation that it can be obtained via dimensional reduction from a five dimensional background which is proved to be an exact string solution.Comment: 13 pages, harvmac, Imperial/TP/93-94/51, UCSBTH-94-24 (references added
    corecore