13 research outputs found

    A map of open chromatin in human pancreatic islets

    No full text
    Tissue-specific transcriptional regulation is central to human disease1. To identify regulatory DNA active in human pancreatic islets, we profiled chromatin by formaldehyde-assisted isolation of regulatory elements2,3,4 coupled with high-throughput sequencing (FAIRE-seq). We identified ∼80,000 open chromatin sites. Comparison of FAIRE-seq data from islets to that from five non-islet cell lines revealed ∼3,300 physically linked clusters of islet-selective open chromatin sites, which typically encompassed single genes that have islet-specific expression. We mapped sequence variants to open chromatin sites and found that rs7903146, a TCF7L2 intronic variant strongly associated with type 2 diabetes5, is located in islet-selective open chromatin. We found that human islet samples heterozygous for rs7903146 showed allelic imbalance in islet FAIRE signals and that the variant alters enhancer activity, indicating that genetic variation at this locus acts in cis with local chromatin and regulatory changes. These findings illuminate the tissue-specific organization of cis-regulatory elements and show that FAIRE-seq can guide the identification of regulatory variants underlying disease susceptibility

    Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants

    Get PDF
    Type 2 diabetes affects over 300 million people, causing severe complications and premature death, yet the underlying molecular mechanisms are largely unknown. Pancreatic islet dysfunction is central in type 2 diabetes pathogenesis, and understanding islet genome regulation could therefore provide valuable mechanistic insights. We have now mapped and examined the function of human islet cis-regulatory networks. We identify genomic sequences that are targeted by islet transcription factors to drive islet-specific gene activity and show that most such sequences reside in clusters of enhancers that form physical three-dimensional chromatin domains. We find that sequence variants associated with type 2 diabetes and fasting glycemia are enriched in these clustered islet enhancers and identify trait-associated variants that disrupt DNA binding and islet enhancer activity. Our studies illustrate how islet transcription factors interact functionally with the epigenome and provide systematic evidence that the dysregulation of islet enhancers is relevant to the mechanisms underlying type 2 diabetes

    The HNF-1 target collectrin controls insulin exocytosis by SNARE complex formation.

    No full text
    Defective glucose-stimulated insulin secretion is the main cause of hyperglycemia in type 2 diabetes mellitus. Mutations in HNF-1α cause a monogenic form of type 2 diabetes, maturity-onset diabetes of the young (MODY), characterized by impaired insulin secretion. Here we report that collectrin, a recently cloned kidney-specific gene of unknown function, is a target of HNF-1α in pancreatic β cells. Expression of collectrin was decreased in the islets of HNF-1α (-/-) mice, but was increased in obese hyperglycemic mice. Overexpression of collectrin in rat insulinoma INS-1 cells or in the β cells of transgenic mice enhanced glucose-stimulated insulin exocytosis, without affecting Ca2+ influx. Conversely, suppression of collectrin attenuated insulin secretion. Collectrin bound to SNARE complexes by interacting with snapin, a SNAP-25 binding protein, and facilitated SNARE complex formation. Therefore, collectrin is a regulator of SNARE complex function, which thereby controls insulin exocytosis

    Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants.

    Get PDF
    Type 2 diabetes affects over 300 million people, causing severe complications and premature death, yet the underlying molecular mechanisms are largely unknown. Pancreatic islet dysfunction is central in type 2 diabetes pathogenesis, and understanding islet genome regulation could therefore provide valuable mechanistic insights. We have now mapped and examined the function of human islet cis-regulatory networks. We identify genomic sequences that are targeted by islet transcription factors to drive islet-specific gene activity and show that most such sequences reside in clusters of enhancers that form physical three-dimensional chromatin domains. We find that sequence variants associated with type 2 diabetes and fasting glycemia are enriched in these clustered islet enhancers and identify trait-associated variants that disrupt DNA binding and islet enhancer activity. Our studies illustrate how islet transcription factors interact functionally with the epigenome and provide systematic evidence that the dysregulation of islet enhancers is relevant to the mechanisms underlying type 2 diabetes

    Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA

    No full text
    Eviction or destabilization of nucleosomes from chromatin is a hallmark of functional regulatory elements in eukaryotic genomes. Historically identified by nuclease hypersensitivity, these regulatory elements are typically bound by transcription factors or other regulatory proteins. FAIRE (formaldehyde-assisted isolation of regulatory elements) is an alternative approach to identify these genomic regions and has proven successful in a multitude of eukaryotic cell and tissue types. Cells or dissociated tissues are cross-linked briefly with formaldehyde, lysed and sonicated. Sheared chromatin is subjected to phenol/chloroform extraction and the isolated DNA, typically encompassing 1-3% of the human genome, is purified. We provide guidelines for quantitative analysis by PCR, microarrays or next-generation sequencing. Regulatory elements enriched by FAIRE have high concordance with those identified by nuclease hypersensitivity or chromatin immunoprecipitation (ChIP), and the entire procedure can be completed in 3 d. FAIRE has low technical variability, which allows its usage in large-scale studies of chromatin from normal or diseased tissues

    Regulation of Pancreatic .BETA.-cell Function by the HNF Transcription Network: Lessons from Maturity-Onset Diabetes of the Young (MODY)

    No full text
    corecore