37 research outputs found

    Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates

    Get PDF
    Physical trapping of a hydrophobic liquid oil in a matrix of water-soluble biopolymers was achieved using a facile two-step process by first formulating a surfactant-free oil-in-water emulsion stabilized by biopolymers (a protein and a polysaccharide) followed by complete removal of the water phase (by either high- or low-temperature drying of the emulsion) resulting in structured solid systems containing a high concentration of liquid oil (above 97 wt %). The microstructure of these systems was revealed by confocal and cryo-scanning electron microscopy, and the effect of biopolymer concentrations on the consistency of emulsions as well as the dried product was evaluated using a combination of small-amplitude oscillatory shear rheometry and large deformation fracture studies. The oleogel prepared by shearing the dried product showed a high gel strength as well as a certain degree of thixotropic recovery even at high temperatures. Moreover, the reversibility of the process was demonstrated by shearing the dried product in the presence of water to obtain reconstituted emulsions with rheological properties comparable to those of the fresh emulsion

    Biopolymer composites for engineering food structures to control product functionality

    No full text
    There is an increasing need for food systems with tailored properties using essential ingredients. This review provides an overview of how interactions between different ingredients, such as proteins, polysaccharides and lipids can be used to design different biopolymer composites, and how isotropic and anisotropic composites can be created. Preparation of protein-polysaccharide complexes, protein fibrils, polysaccharide nanorods, and macromolecular biopolymer assembly is discussed. These composites can be used to design emulsions, for which different preparation techniques are compared. Different functionalities such as stability under environmental stresses, controlled release for encapsulated components, and retardation of lipid digestion are addressed

    In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions

    No full text
    Chitin nanocrystals (ChN) have been shown to form stable Pickering emulsions. These oil-in-water emulsions were compared with conventional milk (whey protein isolate, WPI, and sodium caseinate, SCn) protein-stabilized emulsions in terms of their lipid digestion kinetics using an in vitro enzymatic protocol. The kinetics of fatty acid release were evaluated as well as the change in oil droplet size of the respective emulsions during lipid digestion. The interfacial pressure was measured by addition of the duodenal components using drop tensiometry and the electrical charge of the oil droplets was also assessed, in an attempt to relate the interfacial properties with the stability of the emulsions towards lipolysis. Lipid hydrolysis in the ChN-stabilized emulsion was appreciably slower and the plateau values of the total concentration of fatty acids released were much lower, compared to the WPI- and SCn-stabilized emulsions. Moreover, the ChN-stabilized emulsions were relatively stable to coalescence during lipid digestion, whereas the WPI- and SCn-stabilized emulsions exhibited a significant increase in their droplet size. On the other hand, no major differences were shown among the different emulsion samples in terms of their interfacial properties. The increased stability of the ChN-stabilized emulsions towards lipolysis could be attributed to several underlying mechanisms: (i) strong and irreversible adsorption of the chitin nanocrystals at the interface that might inhibit an extensive displacement of the solid particles by bile salts and lipase, (ii) network formation by the nanocrystals in the bulk (continuous) phase that may reduce lipid digestion kinetics, and (iii) the ability of chitin, and consequently of ChNs, to impair pancreatic lipase activity. The finding that ChNs can be used to impede lipid digestion may have important implications for the design and fabrication of structured emulsions with controlled lipid digestibility that could provide the basis for the development of novel products that may promote satiety, reduce caloric intake and combat obesity

    Properties of emulsions stabilised by sodium caseinate–chitosan complexes

    No full text
    Oil-in-water emulsions (10%, w/w, oil) were prepared at pH 5.7 by using electrostatically formed complexes of 0.5% (w/w) sodium caseinate (Na-CAS) and 0–0.6% (w/w) chitosan. Emulsions stabilized by complexes with increased levels of chitosan (>0.2% w/w) had a smaller average droplet size and exhibited greater stability during storage. All chitosan containing emulsions exhibited a slight shear thinning behaviour with increased high-shear-rate viscosity at higher chitosan levels. Even though complexing of Na-CAS with chitosan resulted in a delay of the adsorption of the surface active components at the oil/water interface, the presence of chitosan did not significantly influence the rheological properties of the formed interfaces. Acid-induced aggregation was observed only for the emulsion that was stabilized solely by Na-CAS when the pH dropped close to the isoelectric point of the protein component, resulting in flocculation and large increase in the storage modulus

    Engineering interfacial properties by anionic surfactant-chitosan complexes to improve stability of oil-in-water emulsions

    No full text
    Oil-in-water emulsions (10% w/w n-tetradecane) were prepared at pH = 5.7 by using, as surface active agents, electrostatically formed complexes of sodium stearoyl lactylate (SSL) at a concentration of 0.4% (w/w) and chitosan (CH) in a concentration range between 0 and 0.48% w/w. The use of complexes in emulsions with a low concentration of CH

    Aqueous foams stabilized by chitin nanocrystals

    No full text
    The aim of the present study was to explore the potential use of chitin nanocrystals, as colloidal rod-like particles, to stabilize aqueous foams. Chitin nanocrystals (ChN) were prepared by acid hydrolysis of crude chitin and foams were generated mainly by sonicating the respective dispersions. The foamability of the chitin nanocrystals was evaluated and the resulting foams were assessed for their stability, in terms of foam volume reduction and serum release patterns, during storage. Additionally, the samples were studied with light scattering and optical microscopy in order to explore the bubble size distribution and morphology of the foam. Nanocrystal concentration and charge density was varied to alter the packing of the crystals at the interface. At low concentrations of ChNs, foams were stable against coalescence and disproportionation for a period of three hours, whereas at higher concentrations, the foams were stable for several days. The enhanced stability of foams prepared with ChNs, compared to surfactant-stabilized foams, can be mainly attributed to the irreversible adsorption of the ChNs at the air-water interface, thereby providing Pickering stabilization. Both foam volume and stability of the foam were increased with an increase in ChNs concentration, and at pH values around the chitin's pKa (pH 7.0). Under these conditions, the ChNs show minimal electrostatic repulsion and therefore a higher packing of the nanocrystals is promoted. Moreover, decreased electrostatic repulsion enhances network formation between the ChNs in the aqueous films, thereby providing additional stability by gel formation. Overall, ChNs were proven to be effective in stabilizing foams, and may be useful in the design of Pickering-stabilized food grade foams

    Whole Genome Sequencing and Root Colonization Studies Reveal Novel Insights in the Biocontrol Potential and Growth Promotion by Bacillus subtilis MBI 600 on Cucumber

    No full text
    Bacillus spp. MBI 600 is a gram-positive bacterium and is characterized as a PGPR strain involved in plant growth promotion and control of various plant pathogens which has recently been introduced into the agricultural practice. In this study we performed a Next Generation Sequencing analysis, to analyze the full genome of this microorganism and to characterize it taxonomically. Results showed that MBI 600 strain was phylogenetically close to other Bacillus spp. strains used as biocontrol agents and identified as B. subtilis. GOG analysis showed clusters contributed to secondary metabolites production such as fengycin and surfactin. In addition, various genes which annotated according to other plant-associated strains, showed that play a main role in nutrient availability from soil. The root colonization ability of MBI 600 strain was analyzed in vivo with a yellow fluorescence protein (yfp) tag. Confocal laser scanning microscopy of cucumber roots treated with yfp-tagged MBI 600 cells, revealed that the strain exhibits a strong colonization ability of cucumber roots, although it is affected significantly by the growth substrate of the roots. In vitro and in planta experiments with MBI 600 strain and F. oxysporum f.sp. radicis cucumerinum and P. aphanidernatum, showed a high control ability against these soilborne pathogens. Overall, our study demonstrates the effectiveness of MBI 600 in plant growth promotion and antagonism against different pathogens, highlighting the use of this microorganism as a biocontrol agent. © Copyright © 2021 Samaras, Nikolaidis, Antequera-Gómez, Cámara-Almirón, Romero, Moschakis, Amoutzias and Karaoglanidis
    corecore