205 research outputs found

    Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor. II. Concept validation with ZELDA on VLT/SPHERE

    Full text link
    Warm or massive gas giant planets, brown dwarfs, and debris disks around nearby stars are now routinely observed by dedicated high-contrast imaging instruments on large, ground-based observatories. These facilities include extreme adaptive optics (ExAO) and state-of-the-art coronagraphy to achieve unprecedented sensitivities for exoplanet detection and spectral characterization. However, differential aberrations between the ExAO sensing path and the science path represent a critical limitation for the detection of giant planets with a contrast lower than a few 10610^{-6} at very small separations (<0.3\as) from their host star. In our previous work, we proposed a wavefront sensor based on Zernike phase contrast methods to circumvent this issue and measure these quasi-static aberrations at a nanometric level. We present the design, manufacturing and testing of ZELDA, a prototype that was installed on VLT/SPHERE during its reintegration in Chile. Using the internal light source of the instrument, we performed measurements in the presence of Zernike or Fourier modes introduced with the deformable mirror. Our experimental and simulation results are consistent, confirming the ability of our sensor to measure small aberrations (<50 nm rms) with nanometric accuracy. We then corrected the long-lived non-common path aberrations in SPHERE based on ZELDA measurements. We estimated a contrast gain of 10 in the coronagraphic image at 0.2\as, reaching the raw contrast limit set by the coronagraph in the instrument. The simplicity of the design and its phase reconstruction algorithm makes ZELDA an excellent candidate for the on-line measurements of quasi-static aberrations during the observations. The implementation of a ZELDA-based sensing path on the current and future facilities (ELTs, future space missions) could ease the observation of the cold gaseous or massive rocky planets around nearby stars.Comment: 13 pages, 12 figures, A&A accepted on June 3rd, 2016. v2 after language editin

    Implantable photonic neural probes for light-sheet fluorescence brain imaging

    Get PDF
    Significance: Light-sheet fluorescence microscopy (LSFM) is a powerful technique for highspeed volumetric functional imaging. However, in typical light-sheet microscopes, the illumination and collection optics impose significant constraints upon the imaging of non-transparent brain tissues. We demonstrate that these constraints can be surmounted using a new class of implantable photonic neural probes.Aim: Mass manufacturable, silicon-based light-sheet photonic neural probes can generate planar patterned illumination at arbitrary depths in brain tissues without any additional micro-optic components.Approach: We develop implantable photonic neural probes that generate light sheets in tissue. The probes were fabricated in a photonics foundry on 200-mm-diameter silicon wafers. The light sheets were characterized in fluorescein and in free space. The probe-enabled imaging approach was tested in fixed, in vitro, and in vivo mouse brain tissues. Imaging tests were also performed using fluorescent beads suspended in agarose.Results: The probes had 5 to 10 addressable sheets and average sheet thicknesses Conclusions: The neural probes can lead to new variants of LSFM for deep brain imaging and experiments in freely moving animals

    Clinicopathological characteristics and treatment strategies in early gastric cancer: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both endoscopic and surgical approaches are employed in the treatment of early gastric cancer (EGC). The aim of this study was to establish appropriate treatment strategies for early gastric cancer.</p> <p>Methods</p> <p>We retrospectively examined clinicopathological data of EGC patients who had undergone surgery.</p> <p>Results</p> <p>A total of 327 patients (204 males and 123 females, mean age 63.2 years) were eligible for inclusion in the study. The median follow-up period was 31 months. Of 161 mucosal (pT1a) tumors, 87 were mainly undifferentiated and 110 had an undifferentiated component. Four patients with pT1a tumors had lymph node metastases; all these tumors were signet-ring cell carcinomas and were macroscopic type 0-IIc with ulceration, and only one of them had lymphatic invasion. Among patients with submucosal tumors, four of 43 patients with pT1b1 tumors and 37 of 123 patients with pT1b2 tumors had nodal metastases. Lymph node metastases were significantly higher in mixed undifferentiated type group than differentiated type group for both groups, pT1a-pT1b1 (p = 0.0251) and pT1b2 (p = 0.0430) subgroups. Only four of 45 patients with nodal metastases were diagnosed preoperatively by computed tomography (sensitivity 8.9%, specificity 96.2%). Nine patients with pT1b tumors had recurrence after surgery, and died. The sites of initial recurrence were liver, bone, peritoneum, distant nodes, and the surgical anastomosis.</p> <p>Conclusions</p> <p>The incidence of nodal metastases was approximately 5% in undifferentiated type mucosal (pT1a) tumors, and higher in submucosal (pT1b) tumors. The sensitivity of preoperative diagnosis of nodal metastases in EGC using computed tomography was relatively low in this study. Therefore at present surgery with adequate lymphadenectomy should be performed as curative treatment for undifferentiated type EGC.</p

    Implantable photonic neural probes for light-sheet fluorescence brain imaging

    Get PDF
    Significance: Light-sheet fluorescence microscopy (LSFM) is a powerful technique for highspeed volumetric functional imaging. However, in typical light-sheet microscopes, the illumination and collection optics impose significant constraints upon the imaging of non-transparent brain tissues. We demonstrate that these constraints can be surmounted using a new class of implantable photonic neural probes. Aim: Mass manufacturable, silicon-based light-sheet photonic neural probes can generate planar patterned illumination at arbitrary depths in brain tissues without any additional micro-optic components. Approach: We develop implantable photonic neural probes that generate light sheets in tissue. The probes were fabricated in a photonics foundry on 200-mm-diameter silicon wafers. The light sheets were characterized in fluorescein and in free space. The probe-enabled imaging approach was tested in fixed, in vitro, and in vivo mouse brain tissues. Imaging tests were also performed using fluorescent beads suspended in agarose. Results: The probes had 5 to 10 addressable sheets and average sheet thicknesses <16 μm for propagation distances up to 300 μm in free space. Imaging areas were as large as ≈240 μm × 490 μm in brain tissue. Image contrast was enhanced relative to epifluorescence microscopy. Conclusions: The neural probes can lead to new variants of LSFM for deep brain imaging and experiments in freely moving animals

    Growth factors in multiple myeloma: a comprehensive analysis of their expression in tumor cells and bone marrow environment using Affymetrix microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple myeloma (MM) is characterized by a strong dependence of the tumor cells on their microenvironment, which produces growth factors supporting survival and proliferation of myeloma cells (MMC). In the past few years, many myeloma growth factors (MGF) have been described in the literature. However, their relative importance and the nature of the cells producing MGF remain unidentified for many of them.</p> <p>Methods</p> <p>We have analysed the expression of 51 MGF and 36 MGF receptors (MGFR) using Affymetrix microarrays throughout normal plasma cell differentiation, in MMC and in cells from the bone marrow (BM) microenvironment (CD14, CD3, polymorphonuclear neutrophils, stromal cells and osteoclasts).</p> <p>Results</p> <p>4/51 MGF and 9/36 MGF-receptors genes were significantly overexpressed in plasmablasts (PPC) and BM plasma cell (BMPC) compared to B cells whereas 11 MGF and 11 MGFR genes were overexpressed in BMPC compared to PPC. 3 MGF genes (AREG, NRG3, Wnt5A) and none of the receptors were significantly overexpressed in MMC versus BMPC. Furthermore, 3/51 MGF genes were overexpressed in MMC compared to the the BM microenvironment whereas 22/51 MGF genes were overexpressed in one environment subpopulation compared to MMC.</p> <p>Conclusions</p> <p>Two major messages arise from this analysis 1) The majority of MGF genes is expressed by the bone marrow environment. 2) Several MGF and their receptors are overexpressed throughout normal plasma cell differentiation. This study provides an extensive and comparative analysis of MGF expression in plasma cell differentiation and in MM and gives new insights in the understanding of intercellular communication signals in MM.</p

    The Zea mays mutants opaque-2 and opaque-7 disclose extensive changes in endosperm metabolism as revealed by protein, amino acid, and transcriptome-wide analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The changes in storage reserve accumulation during maize (<it>Zea mays </it>L.) grain maturation are well established. However, the key molecular determinants controlling carbon flux to the grain and the partitioning of carbon to starch and protein are more elusive. The <it>Opaque-2 </it>(<it>O2</it>) gene, one of the best-characterized plant transcription factors, is a good example of the integration of carbohydrate, amino acid and storage protein metabolisms in maize endosperm development. Evidence also indicates that the <it>Opaque-7 </it>(<it>O7</it>) gene plays a role in affecting endosperm metabolism. The focus of this study was to assess the changes induced by the <it>o2 </it>and <it>o7 </it>mutations on maize endosperm metabolism by evaluating protein and amino acid composition and by transcriptome profiling, in order to investigate the functional interplay between these two genes in single and double mutants.</p> <p>Results</p> <p>We show that the overall amino acid composition of the mutants analyzed appeared similar. Each mutant had a high Lys and reduced Glx and Leu content with respect to wild type. Gene expression profiling, based on a unigene set composed of 7,250 ESTs, allowed us to identify a series of mutant-related down (17.1%) and up-regulated (3.2%) transcripts. Several differentially expressed ESTs homologous to genes encoding enzymes involved in amino acid synthesis, carbon metabolism (TCA cycle and glycolysis), in storage protein and starch metabolism, in gene transcription and translation processes, in signal transduction, and in protein, fatty acid, and lipid synthesis were identified. Our analyses demonstrate that the mutants investigated are pleiotropic and play a critical role in several endosperm-related metabolic processes. Pleiotropic effects were less evident in the <it>o7 </it>mutant, but severe in the <it>o2 </it>and <it>o2o7 </it>backgrounds, with large changes in gene expression patterns, affecting a broad range of kernel-expressed genes.</p> <p>Conclusion</p> <p>Although, by necessity, this paper is descriptive and more work is required to define gene functions and dissect the complex regulation of gene expression, the genes isolated and characterized to date give us an intriguing insight into the mechanisms underlying endosperm metabolism.</p
    corecore