152 research outputs found

    Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond

    Get PDF
    We map out the first excited state sublevel structure of single nitrogen-vacancy (NV) colour centres in diamond. The excited state is an orbital doublet where one branch supports an efficient cycling transition, while the other can simultaneously support fully allowed optical Raman spin-flip transitions. This is crucial for the success of many recently proposed quantum information applications of the NV defects. We further find that an external electric field can be used to completely control the optical properties of a single centre. Finally, a group theoretical model is developed that explains the observations and provides good physical understanding of the excited state structure

    CO2 Enhancement of Forest Productivity Constrained by Limited Nitrogen Availability

    Get PDF
    Stimulation of terrestrial productivity by rising CO~2~ concentration is projected to reduce the airborne fraction of anthropogenic CO~2~ emissions; coupled climate-carbon (C) cycle models, including those used in the IPCC Fourth Assessment Report (AR4), are sensitive to this negative feedback on atmospheric CO~2~^1^. The representation of the so-called CO~2~ fertilization effect in the 11 models used in AR4 and subsequent models^2,3^ was broadly consistent with experimental evidence from four free-air CO~2~ enrichment (FACE) experiments, which indicated that net primary productivity (NPP) of forests was increased by 23 +/- 2% in response to atmospheric CO~2~ enrichment to 550 ppm^4^. Substantial uncertainty remains, however, because of the expectation that feedbacks through the nitrogen (N) cycle will reduce the CO~2~ stimulation of NPP^5,6^; these feedbacks were not included in the AR4 models and heretofore have not been confirmed by experiments in forests^7^. Here, we provide new evidence from a FACE experiment in a deciduous Liquidambar styraciflua (sweetgum) forest stand in Tennessee, USA, that N limitation has significantly reduced the stimulation of NPP by elevated atmospheric CO~2~ concentration (eCO~2~). Isotopic evidence and N budget analysis support the premise that N availability in this forest ecosystem has been declining over time, and declining faster in eCO~2~. Model analyses and evidence from leaf- and stand-level observations provide mechanistic evidence that declining N availability constrained the tree response to eCO2. These results provide a strong rationale and process understanding for incorporating N limitation and N feedback effects in ecosystem and global models used in climate change assessments

    Probabilistic analysis of the phase space flow for linear programming

    Full text link
    The phase space flow of a dynamical system leading to the solution of Linear Programming (LP) problems is explored as an example of complexity analysis in an analog computation framework. An ensemble of LP problems with nn variables and mm constraints (n>mn>m), where all elements of the vectors and matrices are normally distributed is studied. The convergence time of a flow to the fixed point representing the optimal solution is computed. The cumulative distribution F(n,m)(Δ){\cal F}^{(n,m)}(\Delta) of the convergence rate Δmin\Delta_{min} to this point is calculated analytically, in the asymptotic limit of large (n,m)(n,m), in the framework of Random Matrix Theory. In this limit F(n,m)(Δ){\cal F}^{(n,m)}(\Delta) is found to be a scaling function, namely it is a function of one variable that is a combination of nn, mm and Δ\Delta rather then a function of these three variables separately. From numerical simulations also the distribution of the computation times is calculated and found to be a scaling function as well.Comment: 8 pages, latex, 2 eps figures; final published versio

    Is analysing the nitrogen use at the plant canopy level a matter of choosing the right optimization criterion?

    Get PDF
    Optimization theory in combination with canopy modeling is potentially a powerful tool for evaluating the adaptive significance of photosynthesis-related plant traits. Yet its successful application has been hampered by a lack of agreement on the appropriate optimization criterion. Here we review how models based on different types of optimization criteria have been used to analyze traits—particularly N reallocation and leaf area indices—that determine photosynthetic nitrogen-use efficiency at the canopy level. By far the most commonly used approach is static-plant simple optimization (SSO). Static-plant simple optimization makes two assumptions: (1) plant traits are considered to be optimal when they maximize whole-stand daily photosynthesis, ignoring competitive interactions between individuals; (2) it assumes static plants, ignoring canopy dynamics (production and loss of leaves, and the reallocation and uptake of nitrogen) and the respiration of nonphotosynthetic tissue. Recent studies have addressed either the former problem through the application of evolutionary game theory (EGT) or the latter by applying dynamic-plant simple optimization (DSO), and have made considerable progress in our understanding of plant photosynthetic traits. However, we argue that future model studies should focus on combining these two approaches. We also point out that field observations can fit predictions from two models based on very different optimization criteria. In order to enhance our understanding of the adaptive significance of photosynthesis-related plant traits, there is thus an urgent need for experiments that test underlying optimization criteria and competing hypotheses about underlying mechanisms of optimization

    The longitude problem from the 1700s to today: An international and general education physics course

    Get PDF
    For instructors wishing to use physics as part of an international or general education course, the framework for a course based on the “longitude problem” from the 1700s is described. The longitude problem is teeming with basic principles of physics and astronomy, which makes it ideal for a non-science-major-based college-level course. This paper summarizes the longitude problem in the context of conceptual physics and astronomy and outlines an appropriate curriculum. Specifics on teaching such a course in London, as part of an international studies program, are discussed

    Polyfunctional T-Cell Responses Are Disrupted by the Ovarian Cancer Ascites Environment and Only Partially Restored by Clinically Relevant Cytokines

    Get PDF
    Host T-cell responses are associated with favorable outcomes in epithelial ovarian cancer (EOC), but it remains unclear how best to promote these responses in patients. Toward this goal, we evaluated a panel of clinically relevant cytokines for the ability to enhance multiple T-cell effector functions (polyfunctionality) in the native tumor environment.Experiments were performed with resident CD8+ and CD4+ T cells in bulk ascites cell preparations from high-grade serous EOC patients. T cells were stimulated with α-CD3 in the presence of 100% autologous ascites fluid with or without exogenous IL-2, IL-12, IL-18 or IL-21, alone or in combination. T-cell proliferation (Ki-67) and function (IFN-γ, TNF-α, IL-2, CCL4, and CD107a expression) were assessed by multi-parameter flow cytometry. In parallel, 27 cytokines were measured in culture supernatants. While ascites fluid had variable effects on CD8+ and CD4+ T-cell proliferation, it inhibited T-cell function in most patient samples, with CD107a, IFN-γ, and CCL4 showing the greatest inhibition. This was accompanied by reduced levels of IL-1β, IL-1ra, IL-9, IL-17, G-CSF, GM-CSF, Mip-1α, PDGF-bb, and bFGF in culture supernatants. T-cell proliferation was enhanced by exogenous IL-2, but other T-cell functions were largely unaffected by single cytokines. The combination of IL-2 with cytokines engaging complementary signaling pathways, in particular IL-12 and IL-18, enhanced expression of IFN-γ, TNF-α, and CCL4 in all patient samples by promoting polyfunctional T-cell responses. Despite this, other functional parameters generally remained inhibited.The EOC ascites environment disrupts multiple T-cell functions, and exogenous cytokines engaging diverse signaling pathways only partially reverse these effects. Our results may explain the limited efficacy of cytokine therapies for EOC to date. Full restoration of T-cell function will require activation of signaling pathways beyond those engaged by IL-2, IL-12, IL-18, and IL-21

    Mono- versus polydrug abuse patterns among publicly funded clients

    Get PDF
    To examine patterns of mono- versus polydrug abuse, data were obtained from intake records of 69,891 admissions to publicly funded treatment programs in Tennessee between 1998 and 2004. While descriptive statistics were employed to report frequency and patterns of mono- and polydrug abuse by demographic variables and by study years, bivariate logistic regression was applied to assess the probability of being a mono- or polydrug abuser for a number of demographic variables. The researchers found that during the study period 51.3% of admissions reported monodrug abuse and 48.7% reported polydrug abuse. Alcohol, cocaine, and marijuana were the most commonly abused substances, both alone and in combination. Odds ratio favored polydrug abuse for all but one drug category–other drugs. Gender did not affect drug abuse patterns; however, admissions for African Americans and those living in urban areas exhibited higher probabilities of polydrug abuse. Age group also appeared to affect drug abuse patterns, with higher odds of monodrug abuse among minors and adults over 45 years old. The discernable prevalence of polydrug abuse suggests a need for developing effective prevention strategies and treatment plans specific to polydrug abuse
    corecore