838 research outputs found

    Black Queer Bodies, Afrocentric Reform and Masculine Anxiety

    Get PDF

    Sociocultural Contexts of HIV Transmission for Newcomer Black Gay, Bisexual Men (GBM) Who Have Sex with Men: Implications for Sexual Health Education and Human Rights in Ontario, Canada

    Get PDF
    This article examines the sociocultural and structural conditions that shape HIV vulnerability among newcomer Black gay, bisexual, and other men who have sex with men (GBM) in Ontario, Canada. Based on qualitative data from focus groups with 22 newcomer Black GBM, the study explores how intersecting experiences of anti-Black racism, homophobia, trauma, and precarity during migration and resettlement impact access to sexual health education and care. Participants shared accounts of violence in their countries of origin, challenges navigating Canada’s housing and healthcare systems, and the ongoing mental health impacts of displacement and marginalization. Using a community-based participatory research framework, and in partnership with the Black Coalition for AIDS Prevention (Black CAP), the article argues for a culturally responsive and rights-based approach to sexual health education—one that centres the lived realities of Black GBM newcomers. The findings underscore the urgency of trauma-informed, anti-racist, and inclusive services to support HIV prevention, mental health, and human rights for this underserved population

    The 74MHz System on the Very Large Array

    Full text link
    The Naval Research Laboratory and the National Radio Astronomy Observatory completed implementation of a low frequency capability on the VLA at 73.8 MHz in 1998. This frequency band offers unprecedented sensitivity (~25 mJy/beam) and resolution (~25 arcsec) for low-frequency observations. We review the hardware, the calibration and imaging strategies, comparing them to those at higher frequencies, including aspects of interference excision and wide-field imaging. Ionospheric phase fluctuations pose the major difficulty in calibrating the array. Over restricted fields of view or at times of extremely quiescent ionospheric ``weather'', an angle-invariant calibration strategy can be used. In this approach a single phase correction is devised for each antenna, typically via self-calibration. Over larger fields of view or at times of more normal ionospheric ``weather'' when the ionospheric isoplanatic patch size is smaller than the field of view, we adopt a field-based strategy in which the phase correction depends upon location within the field of view. This second calibration strategy was implemented by modeling the ionosphere above the array using Zernike polynomials. Images of 3C sources of moderate strength are provided as examples of routine, angle-invariant calibration and imaging. Flux density measurements indicate that the 74 MHz flux scale at the VLA is stable to a few percent, and tied to the Baars et al. value of Cygnus A at the 5 percent level. We also present an example of a wide-field image, devoid of bright objects and containing hundreds of weaker sources, constructed from the field-based calibration. We close with a summary of lessons the 74 MHz system offers as a model for new and developing low-frequency telescopes. (Abridged)Comment: 73 pages, 46 jpeg figures, to appear in ApJ

    Processing factors affecting the quality of pheasant meat

    Get PDF
    Call number: LD2668 .T4 1968 M325Master of Scienc

    Two-layer viscous instability in a rotating couette device

    Get PDF
    A novel experiment to study the interfacial shear instability between two liquids is described. Density-matched immiscible liquids are confined between concentric cylinders such that the interface is parallel to the cylinder walls. Interfacial waves that develop because of viscosity differences between the shearing fluids are studied as a function of rotation rate and depth ratio using optical techniques. Conditions neutral stability and the most unstable wavenumber agree reasonably well with predictions from linear stability analysis of the Navier-Stokes equations. Illumination using laser sheets allows precise measurement of the interface shape. Future experiments will verify the correctness of weakly nonlinear theories that describe energy transfer and saturation of wave growth by nonlinear effects. Measurements of solitary wave shapes, that occur far above neutral stability, will be compared to similar measurements for systems that have gravity as an important force to determine how gravity effects large disturbances. These results will be used to interpret slug and annular flow data that have been obtained in other mu g studies

    Fundamental Processes of Atomization in Fluid-Fluid Flows

    Get PDF
    This paper discusses our proposed experimental and theoretical study of atomization in gas-liquid and liquid-liquid flows. While atomization is a very important process in these flows, the fundamental mechanism is not understood and there is no predictive theory. Previous photographic studies in (turbulent) gas-liquid flows have shown that liquid is atomized when it is removed by the gas flow from the crest of large solitary or roll waves. Our preliminary studies in liquid-liquid laminar flows exhibit the same mechanism. The two-liquid system is easier to study than gas-liquid systems because the time scales are much slower, the length scales much larger, and there is no turbulence. The proposed work is intended to obtain information about the mechanism of formation, rate of occurrence and the evolving shape of solitary waves; and quantitative aspects of the detailed events of the liquid removal process that can be used to verify a general predictive theory

    Onset of the aerobic nitrogen cycle during the Great Oxidation Event

    Get PDF
    The rise of oxygen on the early Earth (about 2.4 billion years ago)1 caused a reorganization of marine nutrient cycles2, 3, including that of nitrogen, which is important for controlling global primary productivity. However, current geochemical records4 lack the temporal resolution to address the nature and timing of the biogeochemical response to oxygenation directly. Here we couple records of ocean redox chemistry with nitrogen isotope (15N/14N) values from approximately 2.31-billion-year-old shales5 of the Rooihoogte and Timeball Hill formations in South Africa, deposited during the early stages of the first rise in atmospheric oxygen on the Earth (the Great Oxidation Event)6. Our data fill a gap of about 400 million years in the temporal 15N/14N record4 and provide evidence for the emergence of a pervasive aerobic marine nitrogen cycle. The interpretation of our nitrogen isotope data in the context of iron speciation and carbon isotope data suggests biogeochemical cycling across a dynamic redox boundary, with primary productivity fuelled by chemoautotrophic production and a nitrogen cycle dominated by nitrogen loss processes using newly available marine oxidants. This chemostratigraphic trend constrains the onset of widespread nitrate availability associated with ocean oxygenation. The rise of marine nitrate could have allowed for the rapid diversification and proliferation of nitrate-using cyanobacteria and, potentially, eukaryotic phytoplankton
    corecore