1,504 research outputs found
Extreme magnesium isotope fractionation at outcrop scale records the mechanism and rate at which reaction fronts advance
Isotopic fractionation of cationic species during diffusive transport provides novel means of constraining the style and timing of metamorphic transformations. Here we document a major (~1‰) decrease in the Mg isotopic composition of the reaction front of an exhumed contact between rocks of subducted crust and serpentinite, in the Syros mélange zone. This isotopic perturbation extends over a notable length-scale (~1 m), implicating diffusion of Mg through an intergranular fluid network over a period of ~100 kyr. These novel observations confirm models of diffusion-controlled growth of reaction zones formed between rocks of contrasting compositions, such as found at the slab-mantle interface in subduction zones. The results also demonstrate that diffusive processes can result in exotic stable isotope compositions of major elements with implications for mantle xenoliths and complex intrusions
Evaluating GAIA performances on eclipsing binaries. I. Orbits and stellar parameters for V505 Per, V570 Per and OO Peg
The orbits and physical parameters of three detached, double-lined A-F
eclipsing binaries have been derived combining H_P, V_T, B_T photometry from
the Hipparcos/Tycho mission with 8500-8750 Ang ground-based spectroscopy,
mimicking the photometric+spectroscopic observations that should be obtained by
GAIA, the approved Cornerstone 6 mission by ESA. This study has two main
objectives, namely (a) to derive reasonable orbits for a number of new
eclipsing binaries and (b) to evaluate the expected performances by GAIA on
eclipsing binaries and the accuracy achievable on the determination of
fundamental stellar parameters like masses and radii. It is shown that a 1%
precision in the basic stellar parameters can be achieved by GAIA on well
observed detached eclipsing binaries provided that the spectroscopic
observations are performed at high enough resolution. Other types of eclipsing
binaries (including semi-detached and contact types) and different spectral
types will be investigated in following papers along this series.Comment: A&A, 11 pages, 5 figures, 5 table
New Rotation Periods in the Pleiades: Interpreting Activity Indicators
We present results of photometric monitoring campaigns of G, K and M dwarfs in the Pleiades carried out in 1994, 1995 and 1996. We have determined rotation periods for 18 stars in this cluster. In this paper, we examine the validity of using observables such as X-ray activity and amplitude of photometric variations as indicators of angular momentum loss. We report the discovery of cool, slow rotators with high amplitudes of variation. This contradicts previous conclusions about the use of amplitudes as an alternate diagnostic of the saturation of angular momentum loss. We show that the X-ray data can be used as observational indicators of mass-dependent saturation in the angular momentum loss proposed on theoretical grounds
Transit Timing Analysis in the HAT-P-32 System
We present the results of 45 transit observations obtained for the transiting exoplanet HATP- 32b. The transits have been observed using several telescopes mainly throughout the YETI (Young Exoplanet Transit Initiative) network. In 25 cases, complete transit light curves with a timing precision better than 1.4 min have been obtained. These light curves have been used to refine the system properties, namely inclination i, planet-to-star radius ratio Rp/Rs, and the ratio between the semimajor axis and the stellar radius a/Rs. First analyses by Hartman et al. suggests the existence of a second planet in the system, thus we tried to find an additional body using the transit timing variation (TTV) technique. Taking also the literature data points into account, we can explain all mid-transit times by refining the linear ephemeris by 21 ms. Thus, we can exclude TTV amplitudes of more than ∼1.5min
Transit Timing Analysis in the HAT-P-32 system
We present the results of 45 transit observations obtained for the transiting
exoplanet HAT-P-32b. The transits have been observed using several telescopes
mainly throughout the YETI network. In 25 cases, complete transit light curves
with a timing precision better than min have been obtained. These light
curves have been used to refine the system properties, namely inclination ,
planet-to-star radius ratio , and the ratio between
the semimajor axis and the stellar radius . First analyses by
Hartman et al. (2011) suggest the existence of a second planet in the system,
thus we tried to find an additional body using the transit timing variation
(TTV) technique. Taking also literature data points into account, we can
explain all mid-transit times by refining the linear ephemeris by 21ms. Thus we
can exclude TTV amplitudes of more than min.Comment: MNRAS accepted; 13 pages, 10 figure
Efeitos de diferentes níveis de desfolha nos estádios vegetativo e reprodutivo sobre desenvolvimento da cultura da soja.
JIPE 2013
Eficiência de inseticidas, quando aplicados nas sementes de soja, associados ou não com produtos aplicados na parte aérea, no controle de pragas foliares na cultura.
JIPE 2013
Asiago eclipsing binaries program. II. V505 Per
The orbit and fundamental physical parameters of the double-lined eclipsing
binary V505 Per are derived by means of Echelle high resolution, high S/N
spectroscopy and B, V photometry. Effective temperatures, gravities, rotational
velocities and metallicities are obtained from atmospheric chi^2 analysis. An
E(B-V)<=0.01 mag reddening is derived from interstellar NaI and KI lines. The
distance to the system computed from orbital parameters (60.6 +/- 1 pc) is
identical to the newly re-reduced Hipparcos parallax (61.5 +/- 1.9 pc). The
masses of the two components (M(1) = 1.2693 +/- 0.0011 and M(2) = 1.2514 +/-
0.0012 Msun) place them in the transition region between convective and
radiative stellar cores of the HR diagram, with the more massive of the two
showing already the effect of evolution within the Main Sequence band (T(1) =
6512 +/- 21 K, T(2) = 6462 +/- 12 K, R(1) = 1.287 +/- 0.014, R(2) = 1.266 +/-
0.013 Rsun). This makes this system of particular relevance to theoretical
stellar models, as a test on the overshooting. We compare the firm
observational results for V505 Per component stars with the predictions of
various libraries of theoretical stellar models (BaSTI, Padova, Granada,
Yonsei-Yale, Victoria-Regina) as well as BaSTI models computed specifically for
the masses and chemical abundances of V505 Per. We found that the overshooting
at the masses of V505 Per component stars is already pretty low, but not null,
and described by efficiencies lambda(OV)=0.093 and 0.087 for the 1.27 and 1.25
Msun components, respectively. According to the computed BaSTI models, the age
of the system is about 0.9 Gyr and the element diffusion during this time has
reduced the surface metallicity from the initial [M/H]=-0.03 to the current
[M/H]=-0.13, in excellent agreement with observed [M/H]=-0.12 +/- 0.03.Comment: accepted in press by A&
- …
