168 research outputs found

    The Trans-Pacific Partnership Agreement: Looking Ahead to the Next Steps

    Get PDF
    Pressure has been building for the conclusion of the 12-country Trans-Pacific Partnership (TPP) negotiations. Getting the deal done is important, but the TPP is not just another free trade agreement (FTA). It represents the chance to set a trade agenda for the future across a wide range of topics for countries throughout the Asia-Pacific region. This means that the agreement should not be settled in haste. More importantly, it also means that key decisions need to be reached about broader issues related to the institutional structure of the TPP. These decisions must be made now, before the deal is closed, on issues such as how to create the TPP as a living agreement, the formation of a TPP Secretariat, and the clarification of entry conditions for future members such as the People’s Republic of China (PRC). These choices must be made deliberately and carefully even while officials are struggling with reaching closure on the most highly sensitive issues still remaining in the agreement. It will not be easy, but wise decisions are necessary now to ensure the long-term success of the TPP

    Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus

    Get PDF
    BACKGROUND: Previous results with the planar robot MIT-MANUS demonstrated positive benefits in trials with over 250 stroke patients. Consistent with motor learning, the positive effects did not generalize to other muscle groups or limb segments. Therefore we are designing a new class of robots to exercise other muscle groups or limb segments. This paper presents basic engineering aspects of a novel robotic module that extends our approach to anti-gravity movements out of the horizontal plane and a pilot study with 10 outpatients. Patients were trained during the initial six-weeks with the planar module (i.e., performance-based training limited to horizontal movements with gravity compensation). This training was followed by six-weeks of robotic therapy that focused on performing vertical arm movements against gravity. The 12-week protocol includes three one-hour robot therapy sessions per week (total 36 robot treatment sessions). RESULTS: Pilot study demonstrated that the protocol was safe and well tolerated with no patient presenting any adverse effect. Consistent with our past experience with persons with chronic strokes, there was a statistically significant reduction in tone measurement from admission to discharge of performance-based planar robot therapy and we have not observed increases in muscle tone or spasticity during the anti-gravity training protocol. Pilot results showed also a reduction in shoulder-elbow impairment following planar horizontal training. Furthermore, it suggested an additional reduction in shoulder-elbow impairment following the anti-gravity training. CONCLUSION: Our clinical experiments have focused on a fundamental question of whether task specific robotic training influences brain recovery. To date several studies demonstrate that in mature and damaged nervous systems, nurture indeed has an effect on nature. The improved recovery is most pronounced in the trained limb segments. We have now embarked on experiments that test whether we can continue to influence recovery, long after the acute insult, with a novel class of spatial robotic devices. This pilot results support the pursuit of further clinical trials to test efficacy and the pursuit of optimal therapy following brain injury

    Atrial arrhythmogenicity in aged Scn5a+/∆KPQ mice modeling long QT type 3 syndrome and its relationship to Na+ channel expression and cardiac conduction

    Get PDF
    Recent studies have reported that human mutations in Nav1.5 predispose to early age onset atrial arrhythmia. The present experiments accordingly assess atrial arrhythmogenicity in aging Scn5a+/∆KPQ mice modeling long QT3 syndrome in relationship to cardiac Na+ channel, Nav1.5, expression. Atrial electrophysiological properties in isolated Langendorff-perfused hearts from 3- and 12-month-old wild type (WT), and Scn5a+/∆KPQ mice were assessed using programmed electrical stimulation and their Nav1.5 expression assessed by Western blot. Cardiac conduction properties were assessed electrocardiographically in intact anesthetized animals. Monophasic action potential recordings demonstrated increased atrial arrhythmogenicity specifically in aged Scn5a+/ΔKPQ hearts. These showed greater action potential duration/refractory period ratios but lower atrial Nav1.5 expression levels than aged WT mice. Atrial Nav1.5 levels were higher in young Scn5a+/ΔKPQ than young WT. These levels increased with age in WT but not Scn5a+/ΔKPQ. Both young and aged Scn5a+/ΔKPQ mice showed lower heart rates and longer PR intervals than their WT counterparts. Young Scn5a+/ΔKPQ mice showed longer QT and QTc intervals than young WT. Aged Scn5a+/ΔKPQ showed longer QRS durations than aged WT. PR intervals were prolonged and QT intervals were shortened in young relative to aged WT. In contrast, ECG parameters were similar between young and aged Scn5a+/ΔKPQ. Aged murine Scn5a+/ΔKPQ hearts thus exhibit an increased atrial arrhythmogenicity. The differing Nav1.5 expression and electrocardiographic indicators of slowed cardiac conduction between Scn5a+/ΔKPQ and WT, which show further variations associated with aging, may contribute toward atrial arrhythmia in aged Scn5a+/ΔKPQ hearts

    Virtual reality surgery simulation: A survey on patient specific solution

    Get PDF
    For surgeons, the precise anatomy structure and its dynamics are important in the surgery interaction, which is critical for generating the immersive experience in VR based surgical training applications. Presently, a normal therapeutic scheme might not be able to be straightforwardly applied to a specific patient, because the diagnostic results are based on averages, which result in a rough solution. Patient Specific Modeling (PSM), using patient-specific medical image data (e.g. CT, MRI, or Ultrasound), could deliver a computational anatomical model. It provides the potential for surgeons to practice the operation procedures for a particular patient, which will improve the accuracy of diagnosis and treatment, thus enhance the prophetic ability of VR simulation framework and raise the patient care. This paper presents a general review based on existing literature of patient specific surgical simulation on data acquisition, medical image segmentation, computational mesh generation, and soft tissue real time simulation

    Bactericidal activity of human eosinophilic granulocytes against Escherichia coli

    Get PDF
    Eosinophils participate in allergic inflammation and may have roles in the bodys defense against helminthic infestation. Even under noninflammatory conditions, eosinophils are present in the mucosa of the large intestine, where large numbers of gram-negative bacteria reside. Therefore, roles for eosinophils in host defenses against bacterial invasion are possible. In a system for bacterial viable counts, the bactericidal activity of eosinophils and the contribution of different cellular antibacterial systems against Escherichia coli were investigated. Eosinophils showed a rapid and efficient killing of E. coli under aerobic conditions, whereas under anaerobic conditions bacterial killing decreased dramatically. In addition, diphenylene iodonium chloride (DPI), an inhibitor of the NADPH oxidase and thereby of superoxide production, also significantly inhibited bacterial killing. The inhibitor of nitric oxide (NO) production L-N5-(1-iminoethyl)-ornithine dihydrochloride did not affect the killing efficiency, suggesting that NO or derivatives thereof are of minor importance under the experimental conditions used. To investigate the involvement of superoxide and eosinophil peroxidase (EPO) in bacterial killing, EPO was blocked by azide. The rate of E. coli killing decreased significantly in the presence of azide, whereas addition of DPI did not further decrease the killing, suggesting that superoxide acts in conjunction with EPO. Bactericidal activity was seen in eosinophil extracts containing granule proteins, indicating that oxygen-independent killing may be of importance as well. The findings suggest that eosinophils can participate in host defense against gram-negative bacterial invasion and that oxygen-dependent killing, i.e., superoxide acting in conjunction with EPO, may be the most important bactericidal effector function of these cells

    Cardiac sodium channelopathies

    Get PDF
    Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (INa) during phase 0 of the cardiac action potential. The importance of INa for normal cardiac electrical activity is reflected by the high incidence of arrhythmias in cardiac sodium channelopathies, i.e., arrhythmogenic diseases in patients with mutations in SCN5A, the gene responsible for the pore-forming ion-conducting α-subunit, or in genes that encode the ancillary β-subunits or regulatory proteins of the cardiac sodium channel. While clinical and genetic studies have laid the foundation for our understanding of cardiac sodium channelopathies by establishing links between arrhythmogenic diseases and mutations in genes that encode various subunits of the cardiac sodium channel, biophysical studies (particularly in heterologous expression systems and transgenic mouse models) have provided insights into the mechanisms by which INa dysfunction causes disease in such channelopathies. It is now recognized that mutations that increase INa delay cardiac repolarization, prolong action potential duration, and cause long QT syndrome, while mutations that reduce INa decrease cardiac excitability, reduce electrical conduction velocity, and induce Brugada syndrome, progressive cardiac conduction disease, sick sinus syndrome, or combinations thereof. Recently, mutation-induced INa dysfunction was also linked to dilated cardiomyopathy, atrial fibrillation, and sudden infant death syndrome. This review describes the structure and function of the cardiac sodium channel and its various subunits, summarizes major cardiac sodium channelopathies and the current knowledge concerning their genetic background and underlying molecular mechanisms, and discusses recent advances in the discovery of mutation-specific therapies in the management of these channelopathies

    Treatment outcome of elderly patients with aggressive adult T cell leukemia-lymphoma: Nagasaki University Hospital experience

    Get PDF
    VCAP (vincristine, cyclophosphamide, doxorubicin, and prednisone)-AMP (doxorubicin, ranimustine, and prednisone)-VECP (vindesine, etoposide, carboplatin, and prednisone) is a standard regimen for aggressive adult T cell leukemia-lymphoma (ATL). However, the efficacy of this regimen has not been fully elucidated for patients aged 70 years or older. Here, we retrospectively analyzed elderly patients with aggressive ATL at Nagasaki University Hospital between 1994 and 2010 to assess treatment outcomes. Of 148 evaluable patients, 54 were aged 70 years or older at diagnosis. The median survival time (MST) and overall survival (OS) at 2 years in elderly patients were 10.6 months and 22.1 %, respectively. Thirty-four patients received VCAP-AMP-VECP as the initial treatment, although the doses were reduced for most patients. In these patients, MST and OS at 2 years were 13.4 months and 26.6 %, respectively. Eleven of 34 patients (32 %) received maintenance oral chemotherapy after two or three cycles of VCAP-AMP-VECP, and MST and OS at 2 years were 16.7 months and 32.7 %, respectively. Our results suggest that the VCAP-AMP-VECP regimen may be effective and that maintenance oral chemotherapy may be considered as a therapeutic option for elderly patients with aggressive ATL
    corecore