1,440 research outputs found

    Inductive Algebras for Finite Heisenberg Groups

    Full text link
    A characterization of the maximal abelian sub-algebras of matrix algebras that are normalized by the canonical representation of a finite Heisenberg group is given. Examples are constructed using a classification result for finite Heisenberg groups.Comment: 5 page

    Inductive algebras and homogeneous shifts

    Full text link
    Inductive algebras for the irreducible unitary representations of the universal cover of the group of unimodular two by two matrices are classified. The classification of homogeneous shift operators is obtained as a direct consequence. This gives a new approach to the results of Bagchi and Misra

    Simultaneous sub-second hyperpolarization of the nuclear and electron spins of phosphorus in silicon

    Full text link
    We demonstrate a method which can hyperpolarize both the electron and nuclear spins of 31P donors in Si at low field, where both would be essentially unpolarized in equilibrium. It is based on the selective ionization of donors in a specific hyperfine state by optically pumping donor bound exciton hyperfine transitions, which can be spectrally resolved in 28Si. Electron and nuclear polarizations of 90% and 76%, respectively, are obtained in less than a second, providing an initialization mechanism for qubits based on these spins, and enabling further ESR and NMR studies on dilute 31P in 28Si.Comment: 4 pages, 3 figure

    A fourth account of centipede (Chilopoda) predation on bats

    Get PDF
    With an incident in Palo Duro Canyon, Texas, USA, Scolopendra heros Girard (Chilopoda: Scolopendromorpha: Scolopendridae) becomes the third centipede species known to prey on bats; S. gigantea Linnaeus and S. viridicornis Newport have been so documented in Venezuela and Brazil, respectively. The Texas predation was interrupted by the predator/prey pair’s falling around 15–20 m from the canyon wall and, perhaps also, by human presence where they landed. The centipede uncoiled and retreated to shelter under a nearby rock and, after initial immobilization, so did the bat. Con un incidente en Palo Duro Canyon, Texas, Estados Unidos, Scolopendra heros Girard (Chilopoda: Scolopendromorpha: Scolopendridae) se convierte en el tercer ciempiés que se sabe depreda murciélagos; S. gigantea Linnaeus y S. viridicornis Newport han sido documentados mostrando este comportamiento en Venezuela y Brasil, respectivamente. El incidente de Texas fue interrumpido por el despeñamiento del par depredador/presa unos 15–20 m desde la pared del cañón y, al parecer, por la presencia humana en el sitio de caída. El ciempiés se desenrolló y retiró para refugiarse bajo una roca cercana. Tras permanecer inmóvil inicialmente, el murciélago hizo lo mismo

    FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism

    Get PDF
    A major target of insulin signaling is the FoxO family of Forkhead transcription factors, which translocate from the nucleus to the cytoplasm following insulin-stimulated phosphorylation. Here we show that the Forkhead transcription factors FoxK1 and FoxK2 are also downstream targets of insulin action, but that following insulin stimulation, they translocate from the cytoplasm to nucleus, reciprocal to the translocation of FoxO1. FoxK1/FoxK2 translocation to the nucleus is dependent on the Akt-mTOR pathway, while its localization to the cytoplasm in the basal state is dependent on GSK3. Knockdown of FoxK1 and FoxK2 in liver cells results in upregulation of genes related to apoptosis and down-regulation of genes involved in cell cycle and lipid metabolism. This is associated with decreased cell proliferation and altered mitochondrial fatty acid metabolism. Thus, FoxK1/K2 are reciprocally regulated to FoxO1 following insulin stimulation and play a critical role in the control of apoptosis, metabolism and mitochondrial function

    Ensuring confidence in predictions: A scheme to assess the scientific validity of in silico models

    Get PDF
    The use of in silico tools within the drug development process to predict a wide range of properties including absorption, distribution, metabolism, elimination and toxicity has become increasingly important due to changes in legislation and both ethical and economic drivers to reduce animal testing. Whilst in silico tools have been used for decades there remains reluctance to accept predictions based on these methods particularly in regulatory settings. This apprehension arises in part due to lack of confidence in the reliability, robustness and applicability of the models. To address this issue we propose a scheme for the verification of in silico models that enables end users and modellers to assess the scientific validity of models in accordance with the principles of good computer modelling practice. We report here the implementation of the scheme within the Innovative Medicines Initiative project “eTOX” (electronic toxicity) and its application to the in silico models developed within the frame of this project

    Visual parameter optimisation for biomedical image processing

    Get PDF
    Background: Biomedical image processing methods require users to optimise input parameters to ensure high quality output. This presents two challenges. First, it is difficult to optimise multiple input parameters for multiple input images. Second, it is difficult to achieve an understanding of underlying algorithms, in particular, relationships between input and output. Results: We present a visualisation method that transforms users’ ability to understand algorithm behaviour by integrating input and output, and by supporting exploration of their relationships. We discuss its application to a colour deconvolution technique for stained histology images and show how it enabled a domain expert to identify suitable parameter values for the deconvolution of two types of images, and metrics to quantify deconvolution performance. It also enabled a breakthrough in understanding by invalidating an underlying assumption about the algorithm. Conclusions: The visualisation method presented here provides analysis capability for multiple inputs and outputs in biomedical image processing that is not supported by previous analysis software. The analysis supported by our method is not feasible with conventional trial-and-error approaches

    Topological phase transition in an all-optical exciton-polariton lattice

    Full text link
    Topological insulators are a class of electronic materials exhibiting robust edge states immune to perturbations and disorder. This concept has been successfully adapted in photonics, where topologically nontrivial waveguides and topological lasers were developed. However, the exploration of topological properties in a given photonic system is limited to a fabricated sample, without the flexibility to reconfigure the structure in-situ. Here, we demonstrate an all-optical realization of the orbital Su-Schrieffer-Heeger (SSH) model in a microcavity exciton-polariton system, whereby a cavity photon is hybridized with an exciton in a GaAs quantum well. We induce a zigzag potential for exciton polaritons all-optically, by shaping the nonresonant laser excitation, and measure directly the eigenspectrum and topological edge states of a polariton lattice in a nonlinear regime of bosonic condensation. Furthermore, taking advantage of the tunability of the optically induced lattice we modify the intersite tunneling to realize a topological phase transition to a trivial state. Our results open the way to study topological phase transitions on-demand in fully reconfigurable hybrid photonic systems that do not require sophisticated sample engineering.Comment: 7 pages, 4 figure
    corecore