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ARTICLE

FoxK1 and FoxK2 in insulin regulation of cellular
and mitochondrial metabolism
Masaji Sakaguchi1,2,3, Weikang Cai1,2, Chih-Hao Wang1,2, Carly T. Cederquist1,2, Marcos Damasio1,2,

Erica P. Homan1,2, Thiago Batista1,2, Alfred K. Ramirez1,2, Manoj K. Gupta1,2, Martin Steger4,

Nicolai J. Wewer Albrechtsen4,5,6, Shailendra Kumar Singh7, Eiichi Araki3, Matthias Mann 4,

Sven Enerbäck 8 & C. Ronald Kahn1,2

A major target of insulin signaling is the FoxO family of Forkhead transcription factors, which

translocate from the nucleus to the cytoplasm following insulin-stimulated phosphorylation.

Here we show that the Forkhead transcription factors FoxK1 and FoxK2 are also downstream

targets of insulin action, but that following insulin stimulation, they translocate from the

cytoplasm to nucleus, reciprocal to the translocation of FoxO1. FoxK1/FoxK2 translocation to

the nucleus is dependent on the Akt-mTOR pathway, while its localization to the cytoplasm in

the basal state is dependent on GSK3. Knockdown of FoxK1 and FoxK2 in liver cells results in

upregulation of genes related to apoptosis and down-regulation of genes involved in cell cycle

and lipid metabolism. This is associated with decreased cell proliferation and altered mito-

chondrial fatty acid metabolism. Thus, FoxK1/K2 are reciprocally regulated to FoxO1 following

insulin stimulation and play a critical role in the control of apoptosis, metabolism and

mitochondrial function.
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Insulin signals through the insulin receptor (IR) and to a lesser
extent the insulin-like growth factor-1 receptor (IGF1R) to
regulate a variety of cellular functions in multiple tissues,

including gene transcription, glucose, lipid, and protein meta-
bolism, as well as cell survival, growth control, and apoptosis1–8.
The insulin and IGF1 receptor tyrosine kinases mediate their
effects through tyrosine phosphorylation of substrate molecules,
such as insulin receptor substrates-1 and substrates-2 (IRS-1 and
IRS-2), leading to activation of two major pathways: the phos-
phoinositide 3-kinase (PI3K)-Akt pathway and the MAPK/ERK
pathway9. The PI3K/Akt pathway activates several distinct
downstream pathways and is central to most of the metabolic
actions of insulin, whereas the MAPK pathway is more important
in regulation of cell growth.

One action of Akt is to phosphorylate members of the FoxO
family of Forkhead transcription factors (FoxO1, FoxO3, and
FoxO4). This leads to the exclusion of FoxOs from the nucleus,
thus blocking their transcriptional activity10–14. Extensive studies
over the past decade have shown that turning off FoxOs, espe-
cially FoxO1 plays a significant role in insulin action and reg-
ulation of whole body energy metabolism. In the liver, the
decrease in insulin action during fasting allows FoxO1 to enter
the nucleus and promote the expression of the gluconeogenic
enzymes G6pc (glucose-6-phosphatase, catalytic subunit) and
PEPCK (phosphoenolpyruvate carboxykinase)15–18. FoxO1 also
plays a key role in regulating adipocyte differentiation19 and in
the insulin-mediated regulation of protein degradation in mus-
cle20. Because insulin serves to negate the action of FoxOs by
excluding these transcription factors from the nucleus, knockout
of FoxO1 in liver or FoxO-1, FoxO-3, and FoxO-4 in muscle can
reverse the effects of loss of insulin receptors and their effects on
gene expression and metabolism in these tissues20,21.

Here, using a proteomics approach, we have identified two
members of the FoxK family of Forkhead transcription factors,
FoxK1 and FoxK2, as previously unrecognized targets of insulin
action. By contrast to FoxO1, these transcription factors are
translocated from the cytoplasm to the nucleus after insulin sti-
mulation—a pattern that is reciprocal to that of FoxO1 after
insulin stimulation. We show that activation of FoxK1 and FoxK2
after insulin stimulation is dependent on the mTOR and GSK3
pathways. Knockdown of FoxK1 and FoxK2 in a mouse hepa-
tocyte cell-line causes marked alteration of the transcription of
genes associated with lipid metabolism and mitochondrial func-
tions. Thus, FoxK1/K2 represent critical components in IR and
IGF1R-mediated signal transduction in controlling cell pro-
liferation and metabolism.

Results
FoxK1 interacts with intracellular domains of IR and IGF1R.
To identify new components of IR and IGF1R signaling, we
generated brown preadipocytes in which endogenous insulin and
IGF-1 receptors had been genetically inactivated using Cre-lox
recombination2,22. We then reconstituted the double knockout
(DKO) cells with wild-type mouse 6XHis-tagged IR, IGF1R, or
one of two chimeric receptors—one with the extracellular domain
(ECD) of IR fused to the transmembrane and intracellular
domains of the IGF1R (IR/IGF1R) or the ECD of IGF1R fused to
the transmembrane and intracellular domains (ICD) of IR
(IGF1R/IR) (Fig. 1a). To identify potential protein interactors,
cells were stimulated with or without insulin or IGF-1 (depending
on the extracellular domain) and treated with the crosslinking
agent 3,3′-dithiobis(sulfosuccinimidyl propionate) (DTSSP, 1
mM). The 6XHis-tagged receptors and associated proteins were
then pulled down with Talon beads (Fig. 1a). Mass spectroscopic
proteomic analysis revealed a number of proteins that co-

precipitated with each receptor construct, both in ligand
stimulation-dependent and/or ligand stimulation-independent
manners (Supplementary Fig. 1a). Among the proteins that
associated with both receptors and chimeric receptors in a ligand
stimulation-dependent manner was the Forkhead box protein
FoxK1 (Fig. 1b). This association was confirmed by pulling-down
the His-tagged receptors and immunoblotting for FoxK1
(Fig. 1c).

FoxK1 is a member of the K family of Forkhead transcription
factors and is expressed in many organs and tissues in vertebrates
species from fish to human (Supplementary Fig. 1b,c). Previous
studies have shown that FoxK1 can shuttle between the cytoplasm
and the nucleus in skeletal muscle following cells starvation23. To
assess effects of insulin on subcellular localization of FoxK1, DKO
preadipocytes expressing human insulin receptors were stimu-
lated with insulin then lysed and fractionated by differential
centrifugation into membrane (marked by Na/K ATPase),
cytoplasm (marked by GAPDH), cytoskeleton (marked by
vimentin), nuclear (marked by lamin A/C), and chromatin (both
lamin A/C and histone H3 positive) fractions. The levels of
FoxK1 and FoxO1 in each fraction were determined by
immunoblotting (Fig. 1d and Supplementary Fig. 1d, e). As
previously described13, FoxO1 was predominantly localized in the
nucleus at the basal state (0 min) and, following insulin
stimulation, was phosphorylated and translocated into the
cytoplasm (Fig. 1d and Supplementary Fig. 2a). In contrast,
while FoxK1 protein could be detected in both the cytoplasm and
nucleus in unstimulated cells, by 30 min following insulin
stimulation, cytoplasmic FoxK1 shuttled from the cytoplasm to
the nucleus and chromatin fractions. Interestingly, phosphory-
lated IR-β subunit was also detected in the nucleus and chromatin
fractions, consistent with some previous reports that IR can
translocate to the nucleus following insulin stimulation24,25.
These changes in FoxO1 and FoxK1 in each fraction are
quantitated in Fig. 1e–g. This reciprocal pattern of translocation
of FoxO1 and FoxK1 was also observed in wild-type brown
preadipocytes expressing only endogenous IR (Supplementary
Fig. 2b). Thus, opposite to FoxO1, following insulin stimulation
FoxK1 is translocated from the cytoplasm to the nucleus and
interacts with chromatin.

Insulin-induced FoxK1 translocation is dependent on Akt. To
define the upstream signaling pathways involved in regulation of
FoxK1, we analyzed FoxK1 translocation in brown preadipocytes
upon insulin stimulation in the presence of the Akt inhibitor
MK2206, the PI 3-kinase inhibitor (LY294002) or the MAPK/
ERK (MEK1/2) inhibitor U0126. Using cell fraction, in the pre-
sence of the Akt inhibitor, FoxK1 was retained in the cytoplasm
and inhibited from translocation into the nucleus at 10 and 30
min, whereas the MEK1/2 inhibitor produced only minimal
effects on cytoplasmic versus nuclear localization of FoxK1 in the
basal state or after insulin stimulation (Fig. 2a, b). Likewise,
FoxO1 shuttling from the nucleus to the cytoplasm following
insulin stimulation was blocked by inhibition of PI3K and Akt,
but not significantly altered by MEK/ERK inhibition (Fig. 2a, c
and Supplementary Fig. 3a, b). Translocation of FoxK1 to the
nucleus was also observed in response to EGF and to a lesser
extent PDGF, and like the effect of insulin and IGF-1, this
translocation was blocked by inhibition of PI3K (Supplementary
Fig. 3b). Two-photon immunofluorescence microscopic analysis
of AML12 liver cells confirmed these findings. Thus, in the basal
state, most cells exhibited a predominantly cytoplasmic localiza-
tion of FoxK1 (Fig. 2d, vehicle), whereas following insulin or IGF-
1 stimulation almost all FoxK1 in AML12 cells was in the nucleus,
and this nuclear localization was inhibited by either of two PI3K/
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Akt inhibitors (LY-294002 and MK2206), but not by the MAPK
pathway inhibitor U0126 (Fig. 2d and Supplementary Fig. 3c, d,
e). FoxK1 translocation from the cytoplasm to the nucleus was
also observed in liver tissue following in vivo insulin stimulation
(Fig. 2e, f).

To identify the insulin-dependent phosphorylation sites on
FoxK1, we performed a global phosphoproteomics analysis26 of
cells expressing either the native or the chimeric versions of IR

and IGF1R with or without insulin/IGF1 stimulation for 15 min.
For this analysis, phosphopeptides were enriched prior to MS
using TiO2. We identified two clusters of phosphorylation sites in
FoxK1 and/or FoxK2 that were significantly modulated in a
ligand-dependent and receptor-dependent manner (Fig. 2g, h).
One was a more N-terminal cluster of sites including Ser225/
S229/T233 in FoxK1 that increased following ligand stimulation.
The other was a more C-terminal cluster of phosphorylation sites
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found in both FoxK1 (S402/S406 and S454/S458) and FoxK2
(S415/S419). This cluster showed decreased upon insulin
stimulation (Fig. 2g, h and Supplementary Fig. 3e) or in some
cases a changing pattern of phosphorylation. For example, in this
cluster, the intensity of the triply phosphorylated peptide
containing S414 of FoxK1 was decreased after ligand stimulation
(Fig. 2g; left upper), while the level of the doubly phosphorylated
S414-FoxK1 peptide was increased by ligand stimulation (Fig. 2g;
left lower).

FoxK1/K2 nuclear translocation is also regulated by GSK3α/β.
The phosphorylation sites in all clusters in FoxK1 (S225/S229/
T233, S402/S406, S454/S458) and FoxK2 (S415/S419) showed the
motif S-x-x-x-S (Supplementary Fig. 3d), corresponding to the
consensus S/T-x-x-x-S/T motif of GSK327. Previous reports, on
the other hand, have suggested that the translocation of FoxK1
from the nucleus to the cytoplasm that occurs with serum star-
vation in C2C12 muscle cells is dependent on mTOR signaling25.
To more directly determine if mTOR and/or GSK3 were involved
in the regulation of FoxK1 translocation by insulin, AML12 cells
were serum-starved for 3 h and stimulated with 100 nM insulin or
vehicle for 30 min in the absence or presence of the GSK3α/β
inhibitor CHIR99201 or the mTOR inhibitor rapamycin (Fig. 3a).
Rapamycin completely inhibited FoxK1 nuclear localization both
before and after insulin treatment. Cells treated with the GSK3
inhibitor CHIR99021, on the other hand, showed strong FoxK1
nuclear localization even in the absence of insulin treatment,
indicating that even basal GSK3 activity is critical for the reten-
tion of FoxK1 in the cytoplasm. Addition of CHIR99021 and
rapamycin simultaneously produced effects similar to
CHIR99021 alone (Fig. 3a). These results were confirmed by
Western blot analysis (Fig. 3b and Supplementary Fig. 4a). By
comparison to FoxK1, FoxK2 appears to localize to a greater
extent in the nucleus rather than the cytoplasm even before
insulin stimulation (Fig. 3b and Supplementary Fig. 4a). Thus,
both FoxK1 and FoxK2 were retained in the cytoplasm in the
presence of rapamycin, with the translocation into the nucleus
being more affected for FoxK1 than FoxK2. Treatment with the
GSK3 inhibitor CHIR99021, on the other hand, caused a marked
accumulation of both FoxK1 and FoxK2 in the nucleus irre-
spective of insulin stimulation. These results are quantitated in
Fig. 3c, d.

To further confirm the role of GSK3 in FoxK localization, we
knocked-down GSK3α and GSK3β using RNAi. This produced
~90% reduction of GSK3α/β at the protein level (Fig. 3e and
Supplementary Fig. 4b, c). Knockdown of GSK3α and GSK3β
markedly reduced the cytoplasmic localization of FoxK1 and
increased its nuclear localization (Fig. 3f, g and Supplementary
Fig. 4d). This effect of GSK3α/β knockdown on nuclear
localization of FoxK1 can be rescued by overexpression of HA-
tagged GSK3β cDNA (Fig. 3h, i and Supplementary Fig. 4e).
Taken together these inhibitor and knockdown studies

demonstrate that translocation of FoxK1 to the nucleus is
dependent on the Akt-mTOR pathway, while its localization to
the cytoplasm in the basal state is dependent on the serine/
threonine protein kinase GSK3. When lysates from insulin
stimulated AML12 cells and liver samples were immunoprecipi-
tated with anti-p-Tyr antibody, we could not find any evidence of
Tyr phosphorylation of FoxK1 by western blotting (Supplemen-
tary Fig. 4f, g). On the other hand, serine-to-alanine substitutions
in the GSK3 phosphorylation motifs (S402A/S406A, S454A/
S458A) in FoxK1 resulted in markedly reduced cytoplasmic and
increased its nuclear localization of FoxK1 as compared with
ectopically expressed wild type (WT) FoxK1 (Fig. 3j and
Supplementary Fig. 4h).

FoxK1/K2 as a modifier of insulin signal transduction. To
better define the role of FoxK1 and FoxK2, we performed
knockdown of both molecules in AML12 cells using RNAi. As
expected, knockdown of either FoxK1 (FoxK1 KD) or FoxK2
(FoxK2 KD) did not affect expression or tyrosine phosphoryla-
tion of IR or IRS1 (Y612) (Fig. 4a–e). Somewhat surprisingly,
however, in both FoxK1 KD and FoxK2 KD cells, insulin-
stimulated phosphorylation of Akt (S473), ERK1/2 (T202/Y204),
and ribosomal S6 protein (S235/S236) were all increased by 1.5-
fold to 3-fold (Fig. 4f–i). The enhanced activation of Akt by
FoxK1 or FoxK2 knockdown was associated with enhanced the
shuttling of FoxO1 to the cytoplasm in response to insulin
(Fig. 4j). Conversely, overexpression of FoxK1 and FoxK2 resul-
ted in reduced phosphorylation of ERK1/2 (T202/Y204) and
ribosomal S6 protein (S235/S236), but did not affect expression or
phosphorylation of IR/IGF1R, IRS-1 (Y612), or Akt (S473)
(Supplementary Fig. 5a–i). Thus, not only is the nuclear trans-
location of FoxK1/K2 regulated by insulin, but FoxK1/K2 also
play a regulatory role in insulin signal transduction and can
modify signaling through Akt, ERK, S6K, and FoxO1.

Regulation of gene expression by loss of FoxK1 and FoxK2. To
define the roles of FoxK1 and FoxK2 in gene expression, FoxK1
KD, FoxK2 KD, and FoxK1/FoxK2 double knockdown (DKD)
AML12 cells (confirmed by western blot analysis Fig. 5a and
Supplementary Fig. 6a) were serum-starved, and then stimulated
with insulin (100 nM) or vehicle for 6 h. Total mRNAs from these
cells were subjected to RNAseq analysis using an Illumina HiSeq
2500 platform. Principle component analysis demonstrated the
global change in gene expression of with both individual
knockdowns and especially the DKD cells (Fig. 5b). In the basal
state, of over 13,000 transcripts detected, 5974 genes were dif-
ferentially expressed in DKD cells, with 2996 upregulated and
2978 downregulated, compared with the Control (FDR < 0.25,
Supplementary Fig. 6b). Among these, 358 upregulated genes and
378 downregulated genes were selective to FoxK1 KD, and 84
genes were selectively upregulated and 57 were downregulated in

Fig. 1 Identification of FoxK1 as a component of IR-mediated and IGFR-mediated signaling complex. a Schematic showing proteomic analysis using IR/IGF1R
double-knockout preadipocytes reconstituted with normal IR, IGF1R, chimeric IR/IGF1R or IGF1R/IR before and after treatment of insulin/IGF-1.
b Proteomics results indicating the relative abundance of FoxK peptides associated with immunoprecipitated receptors with or without 100 nM insulin/IGF-
1 stimulation for 15 min. c His-tagged receptor-containing protein complexes were pulled down with Talon beads following insulin/IGF-1 stimulation and
subjected to SDS-PAGE western blotting. Normal or chimeric receptors were detected using antibodies to the IRβ or IGF1Rβ subunits. Bound FoxK1 was
detected using anti-FoxK1 antibody. d Subcellular fractions of cytoplasm, membrane, cytoskeletal, nucleus and chromatin were prepared from DKO brown
preadipocytes re-expressing the IR before (0min) and after 100 nM insulin for 10 and 30min. FoxO1 and FoxK1 in each fraction was assessed by
immunoblotting, as were markers for different fractions: membrane (IRβ), cytosol (GAPDH), nuclear and cytoskeletal (Lamin A/C) and chromatin
(histone H3). e–g Quantitation of FoxO1 and FoxK1 in the cytoplasmic fractions (e), nuclear fractions (f) and chromatin fractions (g) 30min after 100 nM
insulin treatment as determined by scanning densitometry. (two-tailed Student t-test, *P < 0.05; **P < 0.01; ***P < 0.001, n= 4). All data are represented
as mean ± SEM

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09418-0

4 NATURE COMMUNICATIONS |         (2019) 10:1582 | https://doi.org/10.1038/s41467-019-09418-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Foxk2 KD cells (Supplementary Fig. 6b). Gene set pathway
analysis indicated that genes related to cell proliferation, cell
metabolism, and mitochondrial metabolism were downregulated
in DKD cells compared with Control, while genes of the apoptosis
pathway were upregulated (Supplementary Fig. 6c and Supple-
mentary Table 1). A heatmap of the top 50 differentially

expressed genes in DKD cells fell into two distinct clusters (Fig. 5c
and Supplementary Table 2). Twenty-eight genes (Group I) were
upregulated in DKD cells, including cyclin D1 (Ccnd1), serum/
glucocorticoid regulated kinase 1 (Sgk1), adhesion G protein-
coupled receptor G1 (Adgrg1), melanoma cell adhesion molecule
(Mcam1), alkaline phosphatase, liver/bone/kidney (Alpl), and the
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WD-repeat domain phosphinositide-interacting protein 4
(Wdr45), a molecule associated with autophagy. Twenty-two
genes were highly downregulated in DKD cells (Group II). These
were mostly genes associated with lipid metabolism, including
stearoyl-CoA desaturase-1 and desaturase-2 (Scd1 and Scd2),
mitochondrially encoded NADH dehydrogenase 6 (mt-ND6),
vascular cell adhesion molecule (Vcam1), AF4/FMR2 family
member 4 (Aff4), trans-golgi network protein (Tgoln1), and of
course, Foxk1 and Foxk2. To determine the effect of FoxK1 in
mice, we also induced deletion of FoxK1 in liver by tail vein
injections of adenovirus encoding GFP (Control) or Cre into
FoxK1flox/flox mice. Interestingly deletion of FoxK1 in liver caused
the decrease in expression of Vcam1, Aff4, and Tgolin1 mRNAs
and conversely increased in expression of Mcam, Adgrg1, and
Sgk1 mRNAs liver (Supplementary Fig. 6d).

Knockdown of FoxK1 and FoxK2 also affected gene expression
after 6 h insulin stimulation. In Control AML12 cells, 891
transcripts were upregulated (indicated in red numbers) and 662
transcripts were downregulated (indicated in blue numbers) by
insulin (at an FDR < 0.25, |FC| > 1.5) (Fig. 5d). These included a
number of metabolic genes, other protein-coding genes and non-
coding genes, i.e., pseudogenes, miRNAs, and snoRNAs. DKD
cells showed a similar number of changes after insulin
stimulation, with only approximately 30% of insulin upregulated
and insulin downregulated genes being similarly regulated in both
Control and DKD cells (Fig. 5d, e). Gene set analysis showed that
insulin stimulation induced upregulation of genes involved in
classical metabolic pathways, such as glycolysis, glucose metabo-
lism, cholesterol biosynthesis, and genes regulated in diabetes in
both Control and DKD AML12 cells (Supplementary Table 3).
Interestingly, DKD cells showed the blunted regulation of other
pathways upon insulin stimulation, including eicosanoid ligand
binding receptors, mRNA decay acyl chain remodeling and amine
ligand binding receptors, endogenous sterols and synthesis of bile
acids and bile salts via 24-hydroxycholesterol (Fig. 5f and
Supplementary Fig. 6e). A heat map and list of the top 50
differentially regulated genes by insulin at the 6 h time point
among all groups, including a comparison between Control vs.
DKD, is shown in Fig. 5g, Supplementary Fig. 6f and
Supplementary Table 4. This revealed significant changes in
several genes associated with glucose and lipid metabolism: 6-
phosphofructose 2 kinase (1810024B03Rik), radical S-adenosyl
methionine domain containing 2 (Rsad2), dual specificity
phosphatase 5 (Dusp5), apolipoprotein C4 (Apoc4), glutathione
S-transferase mu6 (Gstm6), arginosuccinate synthase 1 (Ass1),
aldolase 1A (Aldoart1), DOPA carboxylase (Ddc), ubiquitin-
specific peptidase 17 line A (Usp17la), methionine adenosyl-
transferase 1A (Mat1a), glucosaminyl (N-acetyl) transferase 3,
mucin type (Gcnt3), aquaporin 9 (Aqp9), UDP glucose 4 epsilon
(Gale), hexokinase 2 (Hk2), and the cystine/glutamate transporter
(Slc7a11).

FoxK1/2 regulate mitochondrial β-oxidation and biogenesis.
Transcriptome analysis in the DKD cells revealed clear alterations
in genes involved in mitochondrial metabolism including
Tomm22, Mfn2, Letm1, and Mtch1 (Fig. 6a, Supplementary
Fig. 6c and Supplementary Tables 5, 6). In addition, DKD cells
showed increased expression of multiple genes associated with
mitochondrial oxidative phosphorylation, such as components of
NADH dephosphorylase 1 subunit complex (Ndufs8, Ndufb3,
Ndufa11, Ndufv1, Ndufv9, Ndufc2, and Ndufb7); ATPase H+

transforming subunits (Atp6v1g1, Atp6v1b2, Atp6v1f, Atp6v0b,
Atp6v0a1, Atp6v0a2, and Atp6v0a4); ATP synthases (ATP5o, and
ATP5g3); cytochrome C oxidase subunits (Cox6b1, Cox7a1,
Cox10, and Cox6b1); succinate dehydrogenase complexes (Sdha,
Sdhd, Sdhb, Sdhc); and ubiquinol cytochrome C reductase bind-
ing proteins (Uqcrq). These genes which are upregulated in the
DKD cells are presumably normally downregulated by the action
of FoxK1 and FoxK2. Interestingly, DKO cells showed marked
downregulation of other mitochondrial regulatory genes,
including other subunits of the NADH dephosphorylase 1 sub-
unit complex (Ndub2, Ndufs2, Ndufs1, Ndufv2, Ndufa5, and
Ndufa1); cytochrome C1 and cytochrome oxidase subunits
(Cox6a1, Cox7c, Cox5a, Cox17 and Cox7b); ATPase H+ trans-
forming subunits (Atp5g1, Atp6v1e1, Atp6v1d, and Atp6v0d1);
ATP synthases (ATP6v0c, ATP5g1 and ATP5e); pyrophosphatase
(Ppa2) and some components of the ubiquinol cytochrome C
reductase complex (Uqcrfs1, Uqcrb, and Uqcr10). Thus, FoxK1
and FoxK2 upregulate and downregulate many of the nuclear-
encoded components of mitochondrial oxidative phosphorylation
and the cytochrome C pathway (Supplementary Fig. 6c).

To determine the impact of these changes on fatty acid β-
oxidation, we analyzed the levels of fatty acid oxidation (FAO) in
control and knockdown cells using palmitate/BSA as substrate
(Fig. 6b). DKD cells showed over a 70% reduction in basal FAO
(Fig. 6c), a 55% reduction in ATP-coupled FAO (Fig. 6d), and a
73% reduction in maximal FAO (Fig. 6e) compared with
Controls. Single knockdown of FoxK1 or FoxK2 showed inter-
mediate reductions (Fig. 6c–e). We then analyzed the mitochon-
drial function by measuring the oxygen consumption rate of cells
using pyruvate/glucose as substrates (Fig. 6f). Again, DKD cells
showed significant reductions in basal respiration (17.8 %), ATP-
production (21.3%), and maximal respiration (21.0%) compared
with Controls, and the single FoxK1 KD and FoxK2 KD cells
showing intermediate reductions (Fig. 6g–i).

These changes in mitochondrial function were associated
with altered mitochondrial morphology as visualized by
electron microscopy. Both the single KD and DKD cells had
mitochondria with reduced matrix density, disrupted and
scanty cristae and a more rounded shape (Fig. 6j) in
comparison with the control mitochondria with normal
ameboid shape and well-preserved cristae (Fig. 6j). Despite
the decrease in mitochondrial size, there was an increase in

Fig. 2 Insulin and IGF-1 regulate nuclear translocation of FoxK1 in an Akt-dependent manner. a Immunoblotting of FoxO1 and FoxK1 in nuclear and
cytoplasmic fractions extracted from IR-expressing brown preadipocytes before and after stimulation with 10 nM insulin at the indicated times in the
presence or absence of the Akt inhibitor MK2206 (5 μM) or the MEK1/2 inhibitor U0126 (20 μM). GAPDH is a cytosolic marker, and Lamin A/C is a
nuclear marker. b, c Densitometry of FoxK1 (b) and FoxO1 (c) in the cytoplasmic fractions and nuclear fractions 30min after insulin stimulation as in
Supplementary Fig. 3a. (One-way ANOVA followed by Tukey-Kramer post hoc analysis, *P < 0.05; **P < 0.01; ***P < 0.001, n= 3). All data are represented
as mean ± SEM. d Representative images of AML 12 cells immunostained for FoxK1 and DAPI before and 30min after 100 nM insulin treatment in the
presence or absence of 50 μM PI3K inhibitor LY-294002 or 5 μM MK2206 (Akt inhibitor) or 20 μM U0126 (MEK inhibitor). DAPI was used to label the
nucleus. Scale bars, 50 μm. e Immunoblotting of FoxK1 in nuclear and cytoplasmic fractions extracted from 2-month-old C57BL/6 J mice liver tissues 15
min after injection of saline or 5 U insulin via the inferior vena cava. GAPDH is a cytosolic marker, and Lamin A/C is a nuclear marker. f Densitometry
of FoxK1and FoxO1 in the cytoplasmic fractions (left) and nuclear fractions (right) 15 min after insulin stimulation as in Fig. 2e (two-tailed Student t-test,
*P < 0.05; **P < 0.01; ***P < 0.001, n= 4). All data are represented as mean ± SEM. g Heatmap of Log2 transformed, z-score phosphosite intensities for
FoxK1 and FoxK2 in the presence or absence of insulin/IGF-1 in cells expressing normal or chimeric receptors. Significant increase or decrease of the
phosphorylation clusters for FoxK1 and FoxK2 after insulin/IGF-1 stimulation are shown in panel h
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copy number of the mitochondrial genes mt-Nd1 and mt-Nd6
relative to the nuclear gene (Gapdh) by qPCR in FoxK1 KD and
DKD cells presumably as a compensatory reaction to the
mitochondrial dysregulation (Fig. 6k Supplementary Fig. 6g).
The effects of FoxK1/K2 DKD on mitochondrial respiration
activity and the levels of fatty acid oxidation (FAO) were

rescued by re-expression of FoxK1 and FoxK2 (Fig. 6l–p and
Supplementary Fig. 6h–k).

Role of FoxK1 in cell proliferation and survival. Using a
computational approach, we aligned the potentially regulated
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genes in the RNA-seq data with the potential promoter consensus
sequences23 for the Forkhead/winged-helix motif of FoxK1 and
FoxK2 (Fig. 7a and Supplementary Fig. 7a). Comparing the 1151
genes differentially regulated in the FoxK1/K2 DKD cells after
insulin stimulation to changes in control cells (at a FDR < 0.25, |
FC| > 1.5), we found 262 genes, including 13 transcription factors,
which have a FoxK1 and/or FoxK2 consensus motif in their
promoter regions (Fig. 7a). Another 598 genes have motifs in
their promoter regions that could be targeted by the 13 FoxK1/
K2-regulated transcription factors. Thus, 860 (262+ 598) of the
genes whose expression was altered contain either FoxK1/K2
motifs or motifs regulated by the downstream transcription fac-
tors in their promoter regions. The remaining 291 genes do not
contain any of these motifs, suggesting that they are regulated by
other transcriptional events (Fig. 7b). Gene set analysis revealed
that genes related to cell proliferation, apoptosis, and mitochon-
drial metabolism carrying the FoxK1/K2 motif were among the
most markedly altered in DKD cells (Fig. 7c, d and Supplemen-
tary Fig. 7b).

Given that DKD cells showed dysregulation of genes involved
in cell proliferation in response to insulin stimulation, we
examined the role of FoxK1 and FoxK2 on cell growth. Both
FoxK1 KD and the DKD cells showed 52–74% decreases in [3H]-
thymidine and 5-ethynyl-20-deoxyuridine (EdU) incorporation
into DNA after insulin stimulation compared with control cells,
indicating the important role of FoxK1 on insulin stimulation of
DNA synthesis and mitogenesis (Fig. 7e, f). Consistent with a role
of FoxK1 in cell proliferation, chromatin immunoprecipitation
(ChIP), and quantitative PCR (qChIP) analysis showed that
FoxK1 can interact directly with the promoter regions of Cyclin-
dependent kinase inhibitor 1B (Cdkn1b) and Cyclin-G2 (Ccng2),
both of which carry a FoxK1 consensus motif, following insulin
stimulation (Fig. 7g). We also observed differences in the basal
proliferation rates of FoxK1 KD cells compared with control cells
(Fig. 7e, f) and differences in the basal of levels of expression of
genes involved in cell cycle (Supplementary Fig. 7c-e). Likewise,
FoxK1 KD and DKD cells showed downregulation in multiple
genes involved in cell cycle regulation, while FoxK2 KD cells
which showed minimal effect on proliferation altered only a small
number of these genes (Supplementary Fig. 7f, g). Thus, FoxK1
KD and DKD cells have a lower proliferation potential despite the
enhanced ERK1/2 phosphorylation upon insulin stimulation
(Fig. 4g, h).

While FoxK1 KD and FoxK2 KD cells caused some changes in
expression in common downstream targets, they showed clear
differences in both upregulated and downregulated genes in the
pathway analysis (Supplementary Fig. 7h). Thus, FoxK1 KD
resulted in decreases in genes in pathways associated with cell
cycle, cell survival, biosynthetic and metabolic, and stress

response, while FoxK2 KD showed decreases in a small number
of pathways, including genes involved in secretion and bile acid
metabolism. Likewise, FoxK1 KD caused increases in expression
of genes associated with extracellular matrix, apoptosis and
intracellular calcium influx, while FoxK2 KD caused increases in
expression of genes associated with cell–cell interactions and
immune responses. Consistent with the altered expression of
genes involved in cell survival and apoptosis in FoxK1 KD cells,
both FoxK1 KD or DKD cells showed significantly increased
caspase 3 cleavage compared with control cells following
prolonged serum starvation (Fig. 7h, i). Re-expression of
exogenous FoxK1 and FoxK2 reversed the levels of cleaved
caspase 3 in the DKD cells to those of the control (Fig. 7j, k)
indicating an anti-apoptotic effect of FoxK1 and FoxK2.

Discussion
Insulin and IGF-1 are potent regulators of cell growth and
metabolism. These effects are mediated by changes in protein
phosphorylation, protein localization and activity, and gene
expression. Despite considerable progress over the past decade in
understanding the molecular mechanisms underlying these
effects, except for members of the FoxO family, most other
potential regulators of the transcriptional effects of these hor-
mones remain poorly understood. The present study provides
important insights into this process by showing that in addition
to FoxO transcription factors, insulin and IGF1 receptors also
regulate the function of FoxK family of Forkhead factors, speci-
fically FoxK1 and FoxK2. This regulation involves multisite
phosphorylation via the actions of Akt, GSK3, and mTOR,
leading to translocation of FoxK1/K2 from the cytoplasm to the
nucleus and the nuclear chromatin fraction, i.e., in the opposite
direction of FoxOs. Using mutational analysis, we show that
GSK3 phosphorylation at S402/S406 and S454/S458 in FoxK1
play a major role in its translocation. Thus, under basal condi-
tions, FoxK1/K2 are localized in the cytoplasm, and this is
dependent on GSK3-mediated phosphorylation. After insulin
stimulation, there is activation of Akt with increased phosphor-
ylation of GSK3. This results in a decrease in GSK3 activity,
decreased phosphorylation of FoxK1/K2 at this serine phos-
phorylation motif and translocation of FoxK1/K2 into the nucleus
where they can both activate and repress gene expression25. This
is associated with a change in transcriptional profile decreasing
mitochondrial oxidation and favoring long-term survival of cells
during active cell proliferation.

There are multiple levels of crosstalk between insulin signaling
and FoxK1/K2. First, these transcription factors can be co-
immunoprecipitated with these receptors in a ligand-dependent
manner. Second, translocation of FoxK1/K2 occurs co-incident

Fig. 3 FoxK1/K2 nuclear translocation is induced by GSK3α/β inactivation. a Immunostaining of FoxK1 before and 30min after 100 nM insulin in the presence
or absence of rapamycin (100 nM) or/and CHIR99201 (10 μM) in AML12 cells. Scale bars, 50 μm. b Nuclear and cytoplasmic fractions extracted from the
AML12 cells before and after 100 nM insulin as indicated time points in the presence or absence of 100 nM rapamycin or/and 10μM CHIR99201. FoxK1/K2 in
each fraction was assessed by immunoblotting. c, d Quantification of FoxK1/K2 intensity in the indicated fractions (c, d) before and 30min after insulin in
the presence or absence of rapamycin or/andCHIR99201 as shown in Supplementary Fig. 4a. (One-way ANOVA followed by Tukey-Kramer post hoc analysis,
*P < 0.05; **P < 0.01; ***P < 0.001, n= 3). e Quantification of immunoblot (Supplementary Fig. 4b, c) in AML12 cells transfected with Control siRNA or siRNAs
for GSK3α or GSK3β cells. (two-tailed Student t-test, ***P < 0.001). (n= 4). Data are represented as mean ± SEM. f Nuclear and cytoplasmic fractionation and
immunoblotting of FoxK1 extracted from the indicated cells before and after 100 nM insulin as 10min and 30min. g Quantitation of FoxK1 in theindicated
fractions in Supplementary Fig. 4a (One-way ANOVA followed by Tukey-Kramer post hoc analysis, *P < 0.05; **P < 0.01; ***P < 0.001, n= 3). Data are
represented as mean ± SEM. h Immunoblotting with indicated antibody in AML12 cells transfected with NS siRNA, GSK3α siRNA, GSK3β siRNA, GSK3α/β DKD,
and re-expressed with HA-tagged GSK3β in GSK3α/β DKD cells. i Immunostaining of FoxK1 before and 30min after 100 nM insulin in Control, GSK3α/β double
knockdown cells and re-expressed with HA-GSK3β in GSK3α/β DKD cells. Scale bars, 50 μm. j Nuclear and cytoplasmic fractionation were extracted from cells
overexpressing 3XFlag-FoxK1 wild type or the 3XFlag-FoxK1 S402A/S406A/S454A/S458A mutant before and after 100 nM insulin for 30min. The relative
FoxK1 nucleus/cytoplasm protein expression ratio was quantified in Supplementary Fig. 4h. (two-tailed Student t-test, *P < 0.05, n= 3)
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with translocation of phosphorylated IR/IGF1R to the nucleus.
However, we could not find any evidence of direct Tyr phos-
phorylation of FoxK1 by the receptor. Rather, as noted above, this
translocation is dependent on serine phosphorylation of FoxK1,
which is downstream of Akt, mTOR, and GSK3. Although the
exact molecular mechanism of translocation remains to be
determined, the translocation of FoxK1 coincident with phos-
phorylated IRβ into nucleus and toward chromatin may depend
on interaction with yet another protein involved in this complex.

In addition, there is a feedback loop such that FoxK1/K2 play a
regulatory role in insulin signal transduction by modifying the
signaling through Akt and ERK, such that knockdown of FoxK1/
K2 result in enhanced Akt/ERK phosphorylation/activation.
Transcriptome analysis supports the role of FoxK1/K2 as a
modifier of insulin-mediated signal transduction pathways. Thus,
in FoxK DKO cells insulin has lost its ability to up-regulate
multiple genes involved in regulation of signal transduction
including the dual specific phosphatase Dusp5 involved in
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regulation of ERK28, chordin (Chrd) involved in TGFβ-signaling
and BMP signaling29, tyrosine protein phosphatase type 5
(PTPN5) involved in suppression of ERK30, protein phosphatase
1, catalytic subunit, alpha isoform (Ppp1ca) involved in sup-
pression of Akt31, myosin heavy chain 10 (Myh10) that is asso-
ciated with AMPK and involved in insulin sensitivity32, neuritin 1
(nrn1) which is involved in upregulation of outward current (IA)
subunit Kv4.2 expression and increases IA densities, in part
activating IR signaling33,34, Sprouty homolog 4 (SPRY4) involved
in MAPK inhibition35, C–C chemokine receptor (CCR9) involved
in insulin sensitivity36, and methionine adenosyltransferase 1A
(Mat1a) which is involved in triglyceride storage and insulin
sensitivity37. Exactly how this combination of FoxK regulation of
signal transduction genes alters insulin and IGF-1 action remains
to be determined.

One of the most interesting aspects of FoxK1/K2 regulation is
that it is reciprocal to FoxO signaling. In the fasting or unsti-
mulated state, FoxO1 localizes predominantly in the nucleus.
Insulin induces Akt activation through IRS-1 and IRS-2 leading
to the phosphorylation of FoxO1 which favors its translocation
into the cytoplasm and binding to 14–3–3 proteins, thus blocking
its transcriptional activity. The targets of FoxOs are multiple and
include genes involved in metabolism, cell proliferation, apop-
tosis, autophagy, inflammation, and stress resistance38. This is
analogous to the regulation of the Forkhead transcription factor
Daf-16 in C. elegans39. FoxOs and Daf-16 bind to two response
elements in DNA, the Daf-16 member binding element (5′-
GTAAA(C/T)AA-3′) and the insulin-response element (5′-(C/A)
(A/C)AAA(C/T)AA-3′)40. Previous studies23 and our current
work suggest that FoxKs bind to a similar motif [(A/T)(G/A)
TAAA(C/T)A]. However, we have identified this motif in the
promoters of only about 25% of genes regulated in the FoxK1/K2
DKD cells, suggesting that some of the changes in gene expres-
sion are regulated by transcription factors downstream FoxK1/
K2. In addition to binding directly to DNA, FoxK proteins also
may be recruited to chromatin through protein–protein interac-
tions similar to FoxO proteins.

In mammals, FoxO1 has been intensively studied as one of the
key regulatory molecules for glucose metabolism in liver. FoxO1
has effects on genes involved in glucose production and utiliza-
tion and has little effect on genes directly involved lipid or glucose
oxidation41. Thus, in liver, FoxO1 interacts with Pgc1α17 and
upregulates the expression of gluconeogenic enzymes, such as
G6pc and PEPCK42. In preadipocytes, FoxO1 increases expres-
sion of p21 and suppresses PPARγ inhibiting their differentiation
to adipocytes in vitro19,43. FoxO1 also reduces the expression of
G1-phase cyclins D1 and D2, and G2-M phase cyclin B44. FoxO1
phosphorylation is also influenced by acetylation and deacetyla-
tion by the NAD-dependent deacetylases Sirt1 and Sirt245. Sirt1
binds directly to FoxO1 through a conserved LXXL motif and
catalyzes its deacetylation46. FoxO1 acetylation promotes its
phosphorylation leading to its retention in the cytoplasm and
reduces FoxO1 transcriptional activity47. Insulin also regulates
gene expression in liver through effects on sterol regulatory

element binding protein-1c (SREBP-1c)48, and SREBP-1c acti-
vation is also regulated at a transcriptional level via FoxO1 and
Sp149.

While much remains to be learned about the physiological impact
of FoxK1/K2 regulation of gene expression, FoxK1 has been shown
to regulate the expression of c-myc and the p21 genes in C2C12
muscle cells50,51. FoxK1 also cross-talks with Wnt/β-catenin signaling
by translocating Disheveled (DVL) into the nucleus52. In this study,
we find that FoxK1/K2 regulate sets of genes involved in mito-
chondrial metabolism, cell apoptosis, and cell survival in AML12 liver
cells. We also found that FoxK1 directly interacts with the promoter
regions of cyclin-dependent kinase inhibitor 1B (Cdkn1b) and cyclin-
G2 (Ccng2) following the insulin stimulation. As a result, knockdown
of FoxK1 and FoxK2 causes the impairment of cell proliferation,
increases cleaved caspase 3 indicating increased apoptosis, reduced
expression of genes involved in mitochondrial lipid oxidation and
decreased basal and maximal lipid oxidation. In addition, re-
expression of FoxK1/K2 in the knockdown cells results in recovery of
mitochondrial oxidative phosphorylation. Thus, FoxK1 can play a
complementary role with FoxO1 in regulation of liver cell
metabolism.

Taken together, our data support a expanded model of insulin
action and the role of Forkhead box transcription factors (sum-
marized in Fig. 8). In this model, insulin signaling triggers insulin
receptor substrate phosphorylation leading to PI3K-Akt activa-
tion resulting in phosphorylation and downregulation of FoxO
activity by excluding FoxO from the nucleus and retaining it in
the cytoplasm. Simultaneously, insulin signaling modified the
phosphorylation at multiple sites resulting in the reciprocal
translocation of FoxK transcription factors from cytoplasm to
nucleus where they migrate to the chromatin fraction. This
translocation of FoxK1/K2 is dependent on the Akt, mTOR, and
GSK3 pathways, and is important in control of fatty acid oxida-
tion, mitochondrial biogenesis, cell proliferation, and survival.
The reciprocal translocation of FoxKs and FoxO1 between the
cytoplasm and nucleus after insulin stimulation creates an ela-
borate balance in insulin regulation of metabolism, cell growth,
and cell survival.

Methods
Materials. Antibodies against phospho-IR/IGF1R (#3024, 1:1000), IRβ (#3025,
1:1000), IGF1Rβ (#3027, 1:1000), phospho-ERK1/2 (T202/Y204) (#9101, 1:1000),
ERK1/2 (#9102, 1:1000), phospho-Akt (S473) (#9271, 1:1000), Akt (#4685, 1:1000),
phospho-S6 (S235/236) (#2211, 1:2000), S6 (#2317, 1:1000), phosopho-FoxO1/3
(#9464,1:1000), FoxO1 (#2880,1:1000), FoxK1(#12025,1:1000), FoxK2
(#12008,1:1000), Lamin A/C (#2032,1:1000), HistoneH3 (#4499,1:1000), GSK3α
(#4337, 1:1000), GSK3β (#9315, 1:1000), Vimentin (#5741, 1:1000), Na, K/ATPase
(#3010, 1:1000) were purchased from Cell Signaling Technologies. Phospho-IRS-1
(Y612) (09-432, 1:1000) antibody was purchased from Millipore. GAPDH (sc-
25778, 1:1000) antibody was from Santa Cruz. Flag (F3040, 1:5000) antibody was
from Sigma. Anti-IRS-1 (611394, 1:500) antibody was from BD Biosciences. For
immunocytochemistry FoxK1 (ab18196) was purchased from Abcam. Human
insulin was purchased from Sigma and human IGF-1 from Preprotech. Mouse
3XFlag-FoxK1 and 3XFlag-FoxK2 cDNA clones were purchased from Geneco-
poeia. Human HA-GSK3βcDNA clone was from Addgene. Mouse IR (MC224356)
and IGF1R (MC224342) cDNA clones were from Origene. Wild-type IR and
IGF1R, as well as chimeric receptors IR/IGF1R [IR extracellular domain (a.a.

Fig. 4 Role of FoxKs in the regulation of insulin-mediated signal transduction. a Immunoblotting for phosphorylation of IR and IRS-1 in lysates from Control
(NS siRNA) AML12 cells or cells depleted of either FoxK1 (FoxK1 KD) or FoxK2 (FoxK2 KD) cells by siRNAs stimulated with 100 nM insulin for 5 min.
b–e Densitometric analysis of FoxK1, FoxK2, phosphorylated IR and IRS-1 following 5min stimulation. Data are mean ± SEM (One-way ANOVA followed by
t-test with Bonferroni correction, *P < 0.05; **P < 0.01; ***P < 0.001, n= 3). f Immunoblotting of the phosphorylation of Akt, ERK, and S6 in lysates from
Control (NS siRNA) AML12 cells or cells depleted of either FoxK1 (FoxK1 KD) or FoxK2 (FoxK2 KD) cells by siRNAs and stimulated with 100 nM insulin for
5 min. g–i Densitometric analysis of phosphorylated Akt, ERK, and S6 following 5 min insulin stimulation. Data are mean ± SEM (One-way ANOVA
followed by t-test with Bonferroni correction, *P < 0.05; **P < 0.01; ***P < 0.001, n= 3). j Cytoplasmic fractionation and immunoblotting of FoxK1 and
FoxK2 extracted from the AML12 cells before and after 100 nM insulin as indicated time points (0 min, 15 min)) in the Control, FoxK1 KD and FoxK2
KD cells (left) and quantitation by scanning densitometry (right). Data are mean ± SEM (One-way ANOVA followed by t-test with Bonferroni correction,
*P < 0.05; **P < 0.01; ***P < 0.001, n= 3)
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Fig. 5 Role of FoxKs in the regulation of gene expression. a Immunoblotting of FoxK1 and FoxK2 from lysates of Control (NS siRNA) and FoxK1/K2 double
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(FDR < 0.25). e Volcano plot showing the distribution of differentially regulated genes by insulin stimulation with log-fold change in Control versus DKD
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1–919) fused to IGF1R transmembrane and intracellular domain (a.a. 908–1339),
numbers excluding signal peptide] and IGF1R/IR [IGF1R extracellular domain (a.a.
1–907) fused to IR transmembrane and intracellular domain (a.a. 920–1345)] were
subcloned into the pBabe-hyrgromycin vector22. To generate chimeric receptors,
an Ile947 to Leu point mutation was introduced into the insulin receptor cDNA to
generate a BclI restriction site using the primer pair (5′-ccatcaaatattgccaaactgatc
attggacccctcatc-3′; IR Bcll 3: 5′-gatgaggggtccaatgatcagtttggcaatatttgatgg-3′).

Mice. Mice were maintained on a 12-h light/dark cycle and fed a normal CD
(9F5020; PharmaServ). Tissues from 3-month-old male C57BL/6J mice were col-
lected and rinsed in PBS. To assess insulin signaling in vivo, 5 U insulin (Sigma-
Aldrich) was injected via the inferior vena cava. FoxK1lox/lox mice were created
using a targeting construct with loxP sites flanking exons 4 and 5 of FoxK1. These
mice were injected via the tail vein with adenovirus encoding Cre recombinase gene
to induce recombination in the liver or adenovirus encoding GFP gene as a control.
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All animal studies followed the National Institutes of Health guidelines and were
approved by the Institutional Animal Care and Use Committees at the Joslin
Diabetes Center or University of Gothenburg.

Brown preadipocytes isolation and culture. Preadipocytes were isolated from
newborn IR-lox/IGF1R-lox mice by collagenase digestion of brown fat and
immortalized by infection with retrovirus encoding SV40 T-antigen followed by
the selection with 2 µg ml−1 of puromycin. The immortalized preadipocytes were
infected with adenovirus containing GFP alone (to generate control cell line) or
GFP-tagged Cre recombinase (to generate IR/IGF1R double knockout pre-
adipocytes). GFP-positive cells were sorted and expanded in DMEM supplemented
with 10% heat-inactivated fetal bovine serum (FBS, Sigma), 100 U/ml penicillin
and 100 µg/ml streptomycin (Gibco) at 37 °C in a 5% CO2 incubator2. IR/IGF1R
double knockout preadipocytes were then stably transduced using the pBabe ret-
rovirus system to generate mouse 6XHis-tagged IR, IGF1R, IR/IGF1R IGF1R/IR
chimeric receptor cell lines22. Briefly, human embryonic kidney 293T cells (ATCC)
were transiently transfected with 10 µg of the pBabe-hygro retroviral expression
vectors encoding wild-type or mutant IR or IGF1R sequences and viral packaging
vectors SV-E-MLV-env and SV-E-MLV using TransITExpress transfection reagent
(Mirus Bio Corp.). Forty-eight hours after transfection, virus-containing medium
was collected and passed through a 0.45 µm syringe filter. Polybrene (hex-
adimethrine bromide; 12 µg/ml) was added, and the medium was applied to pro-
liferating (40% confluency) DKO cells. Twenty-four hours after infection, cells were
treated with trypsin and re-plated in a medium supplemented with hygromycin
(Invitrogen). Cells were maintained in DMEM supplemented with 10% FBS, 100
U/ml penicillin and 100 µg/ml streptomycin (Gibco), and cultured at 37 °C in a
humidified atmosphere of 5% CO2.

Insulin and IGF-1 signaling and subcellular fractionation. Cells were serum
starved for 3 h with DMEM containing 0.1% BSA. Cells expressing wild-type IR,
WT IGF1R, chimeric receptor IR/IGF1R or IGF1R/IR were stimulated with 10 or
100 nM insulin for indicated times, while cells expressing wild-type IGF1R or
chimeric receptor IGF1R/IR were stimulated with 10 or 100 nM IGF-1 matching
the extracellular domain for indicated times. After stimulation, cells were washed
immediately with ice-cold PBS once before lysis and scraped down in RIPA buffer
(Millipore, 20–188) supplemented with phosphatase inhibitor and protease inhi-
bitor cocktail (Sigma-Aldrich) and 1× phosphatase inhibitor cocktail (Sigma-
Aldrich). Subcellular protein fractionation was performed using the subcellular
protein fractionation kit (Thermo Scientific Pierce) according to the manu-
facturer’s instructions. Protein concentrations were determined using the Pierce
660 nm Protein Assay Reagent (Bio-Rad). Lysates (10 to 20 µg) were resolved on
SDS-PAGE gels, transferred to PVDF membrane for immunoblotting.

Immunoblotting. Membranes were blocked in Starting Block T20 (ThermoFisher)
at room temperature for 1 h, incubated with the indicated primary antibody in
Starting Block T20 solution overnight at 4 °C. Membranes were washed three times
with 1 × PBST, incubated with HRP-conjugated secondary antibody (1:10,000) in
Starting Block T20 for 1 h and signals were detected using Immobilon Western
Chemiluminescent HRP Substrate (Millipore). All uncropped immunoblotting
images are presented in Supplementary Figs. 8–14.

Chemical cross-linking and pull-down assay. For the chemical cross-linking, the
cells were washed with PBS three times and incubated for 30min at 4 °C with 1mM
DTSSP (Thermo Fisher) in PBS, followed by washing three times with TBS (20mM
Tris-HCl, 100mM NaCl, pH 7.4) before use in the following procedure. To examine
protein interactions, cells expressing His-tagged normal IR, His-tagged normal
IGF1R, His-tagged chimeric receptor IR/IGF1R or IGF1R/IR were lysed in lysis
buffer [20mM Hepes (pH 7.4), 150mM NaCl, 50mM KF, 50 mM β-glycerolpho-
sphate, 2 mM EGTA (pH 8.0), 1 mM Na3VO4, 1% Triton X-100 or 1% NP-40, 10%
glycerol, 1× protease inhibitor cocktail (Sigma) and 5 mM imidazole] and then

centrifuged for 20min at 21,200 ×g. Fifteen milligram protein lysates were incubated
with Talon Metal Affinity Resin (100 μl beads equilibrated in Lysis buffer), (Clon-
tech/Takara, 635501) in a total volume of 14 ml for 1 h at 4 °C with end-to-end
rotation. The protein complex-bound resin was washed three times with Lysis buffer
and eluted the bound His-tagged protein with Elution buffer [20mM Hepes (pH
7.4), 150mM NaCl, 50mM KF, 50 mM β-glycerolphosphate, 2 mM EGTA (pH8.0),
1 mM Na3VO4, 1% Triton X-100 or 1% NP-40, 10% glycerol, 1× protease inhibitor
cocktail (Sigma) and 200mM imidazole] by end-to-end rotation at 4 °C for 5 min.

Liquid chromatography tandem mass spectrometry (LC-MS/MS). Sample
processing steps included SDS-PAGE purification of proteins, in-gel protein
digestion using trypsin and peptide labeling with TMT 10-plex reagents. Multi-
plexed quantitative mass spectrometry data were collected on an Orbitrap Fusion
mass spectrometer operating in a MS3 mode using synchronous precursor selection
for MS2 fragment ion selection53. MS2 peptide sequence data were searched against
a Uniprot mouse database with both the forward and reverse sequences using the
SEQUEST algorithm. Further data processing steps included controlling peptide
and protein level false discovery rates, assembling protein groups, and protein
quantification from peptides.

Cell lines and transient siRNA and plasmid transfections. Cells were seeded at
1 × 105 cells cm−2 for 24 h prior to the transfection. For siRNA treatment, cells
were transfected with 8 μl RNAiMax per 1.3 ml medium and 25 or 50 nM siRNA
according to the manufacturer’s protocol. The target sequences for siRNA treat-
ment are provided in Supplementary Table 7. For transfection of plasmids, cells
were transfected with 4 μl of Lipofectamine 3000 and 2.5 μg DNA each per 1.3 ml
medium. The medium was changed on the next day.

Insulin stimulation for RNA isolation. Cells were serum starved overnight with
DMEM+ 0.1% BSA then mock treated or treated with insulin (100 nM) for 6 h,
after which they were washed once with cold 1× PBS and resuspended in RLT lysis
buffer (Qiagen). Total RNA was extracted using an RNeasy mini kit (Qiagen)
following manufacturer’s manual.

RNA-Seq processing and data analysis. RNA-Seq analysis was performed by the
BioPolymers Facility at Harvard Medical School. Library for RNA-Seq was pre-
pared using NEBNext mRNA Sample Prep Master Mix kit (NEB), and sequencing
was performed using an Illumina HiSeq2500 platform in the Biopolymer core
facility at Harvard Medical School. Statistical significance of transcripts was
assessed with empirical Bayesian linear modeling using the limma package54, and
significance of gene sets was assessed with the sigPathway package55. Heatmaps
were created with the gplots package, and volcano plots and scatterplots were
created with the ggplot2 package56.

qRT-PCR and mitochondrial DNA copy number. One microgram of RNA was
reverse transcribed using a High Capacity cDNA Reverse Transcription kit
(Applied Biosystems) according to the manufacturer’s instructions. Real-time PCR
was performed using the SYBR Green PCR master mix (Bio-Rad). Fluorescence
was monitored and analyzed in an ABI Prism 7900 HT sequence detection system
(Applied Biosystems). TBP expression was used to normalize gene expression.
Amplification of specific transcripts was confirmed by analyzing melting curve
profiles at the end of each PCR. The mitochondrial DNA (mtDNA) copy number
was measured by comparing mt-ND1 and mt-ND6 (mtDNA) to GAPDH (nuclear
DNA). All primer sequences can be found in Supplementary Table 7.

Immunofluorescence. Cells grown on glass coverslips were fixed with 4% for-
maldehyde for 15 min at room temperature, rinsed three times in PBS plus 0.3%
Triton for 5 min and blocked in 5% BSA for 30 min at room temperature. Cells
were then incubated with anti-FoxK1 antibody (Abcam ab18196) and secondary

Fig. 6 Role of FoxKs in the regulation of FAO and mitochondrial biogenesis. a Heatmap of mitochondrial-related gene expression in all groups.
b Measurement of FAO) using Seahorse Bioanalyzer. c–e Quantitation of basal (c), ATP-coupled (d) and maximal (e) OCRs of FAO. Error bars represent
SEM. (One-way ANOVA followed by post hoc analysis, *P < 0.05; **P < 0.01; ***P < 0.001, Control, n= 7, FoxK1 KD, n= 8, FoxK2 KD, n= 9 and DKD, n=
8). f Mitochondrial oxidative phosphorylation activity in Control, Foxk1 KD, Foxk2 KD, and DKD cells. Quantitation of g basal respiration, (h) ATP
production, and (i) maximal respiration capacity as measured by OCR. Error bars represent SEM. (One-way ANOVA followed by Dunnett’s post hoc
analysis, *P < 0.05; **P < 0.01; ***P < 0.001, Control, n= 14, FoxK1 KD, n= 14, FoxK2 KD, n= 13 and DKD, n= 13). j Representative electron microscopic
images of mitochondria in Control, FoxK1 KD, FoxK2 KD and DKD AML 12 cells. Scale bar, 0.5 μm. k Mitochondrial DNA copy number was assessed by
qPCR of mt-ND1/mt-ND6 and normalized to genomic DNA encoding GAPDH in extracted total DNA. (One-way ANOVA followed by post hoc analysis, *P
< 0.05; **P < 0.01; ***P < 0.001, n= 4). l Immunoblotting with anti-FoxK1, FoxK2, and Flag antibody in lysates from Control (NS siRNA), DKD and DKD
cells re-expressing Flag-tagged FoxK1/K2. m Mitochondrial oxidative phosphorylation activity in Control, DKD cells and DKD cells re-expressing Flag-
FoxK1/K2 measured by Seahorse Bioanalyzer. 25 mM glucose and pyruvate mix was used as substrate. Quantification of basal respiration (n), ATP
production (o) and maximal respiratory capacity (p) as measured by OCR. Error bars represent SEM. (One-way ANOVA followed by Dunnett’s post hoc
analysis, *P < 0.05; **P < 0.01; ***P < 0.001, Control+ EV, n= 13, DKD+ EV, n= 13 and DKD+ Flag-FoxK1/K2, n= 12)
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antibody coupled to AlexaFluor 488 (Life Technologies). Cells were mounted on
glass slides using Vectorshield hard set mounting medium (Vector Laboratories).
Images were acquired with a two-photon confocal microscope (Zeiss 710). For EdU
incorporation assay, cells were treated with 10 μM EdU (8 h) and stained with
Click-iT Plus EdU Alexa Fluor 488 Imaging Kit (Thermo Fisher).

Cell proliferation assay using [3H]-thymidine incorporation. Cells were plated
5 × 104 per well to 24-well plates. On the next day cells were starved with serum-
free DMEM/F12 containing 0.1% BSA media for 24 h then labeled with 0.2 μCi
[3H]-thymidine per well for 24 h in the presence or absence of 100 μM insulin.
After labeling, the cells were washed twice with PBS and precipitated with 500 μl of
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10% TCA for 10 min at −20℃. [3H]-thymidine incorporation was quantified by
scintillation counter.

Seahorse bioanalyzer. A Seahorse XFe96 Flux analyzer (Agilent Technologies)
was utilized to measure Oxygen Consumption Rate (OCR) according to manu-
facturer’s protocol. Cells were seeded into XFe 96 cell culture microplates at the
density of 20,000 cells per well. One day before cells were incubated with substrate-
limited medium (DMEM, 0.5 mM glucose, 1 mM GlutaMAX, 0.5 mM carnitine,
1% FBS) to prime cells for fatty acid utilization. One hour before the assay, cells
were given 2.5 mM glucose and 0.5 mM carnitine in the running medium (111 mM
NaCl, 4.7 mM KCl, 1.25 mM CaCl2, 2 mM MgSO4, 1.2 mM NaH2PO4 and 5 mM
HEPES), To determine the Fatty Acid Oxidation (FAO), FAO running media was
added with the 0.175 mM palmitate-BSA FAO substrate (Agilent Technologies)

followed by addition of 1 µM oligomycin (oligo) from, 0.5 μM FCCP, and 2 µM
antimycin (Ant). Prior to oligomycin injection, basal FAO was calculated with the
subtraction of non-mitochondrial respiration by the addiction of the carnitine
palmitoyltransferase-1 (CPT1) inhibitor 40 mM etomoxir. After 1 µM oligomycin
injection, ATP-coupled FAO was calculated. And the maximal FAO is calculated
from Maximal FCCP rate minus non-mitochondrial respiration. For the quanti-
fications in the bar graphs, data points for all wells across the four time-points were
averaged. To measure parameters of mitochondrial function, the XF Cell Mito
Stress Test was utilized by directly measuring the OCR of cells. In this experiment,
cells were given pyruvate and 25 mM glucose in the running medium followed by
sequential addition of 1 µM oligomycin, 1 µM FCCP, and 2 µM antimycin. Basal
respiration, ATP production, and maximal respiration capacity was calculated with
the subtraction of non-mitochondrial respiration. For the quantitation in the bar
graphs, data points for all wells across the four time-points were averaged. Cells

Fig. 7 Increased apoptosis and reduced proliferation in FoxK1/K2 KD cells. a The promoter consensus sequences for FoxK1 in mice or humans based on
Bowman, C. J. et al.23. b The bar graph shows the number of genes (262) carrying the consensus FoxK1/K2 motifs in the promoter regions among 1,151
genes that were differentially regulated in the DKD cells after insulin stimulation compared with those of the Control. c, d The network profile and the
heatmap showed three groups of genes with the FoxK1/K2 motifs in the promoter regions as involved in the cell cycle, apoptosis and mitochondria-related
genes that were highly affected after insulin stimulation in the Control and DKD cells. e Representative images of EdU (green) incorporation in Control. Foxk1
KD, Foxk2 KD and DKD AML12 cells incubated with 100 µM insulin or vehicle for 24 h. EdU is stained green, and nuclei are stained blue (DAPI). Scale
bars, 50 μm. f [3H]-thymidine incorporation in Control, FoxK1 KD, FoxK2 KD and DKD AML12 cells with or without insulin stimulation for 24 h. (One-way
ANOVA followed by Tukey-Kramer post hoc analysis, *P < 0.05; **P < 0.01; ***P < 0.001, n= 4). g qChip of FoxK1 at the promoter regions of indicated
genes in AML12 cells before and 30min after 100 nM insulin treatment. (One-way ANOVA followed by Dunnett’s post hoc analysis, *P < 0.05; **P < 0.01;
***P < 0.001, n= 4). h Immunoblotting for cleaved caspase3 in lysates from cells after 24 h serum starvation. i Densitometric analysis of cleaved caspase3
in all groups. (One-way ANOVA followed by t-test with Bonferroni correction, *p < 0.05; **,p < 0.01; ***p < 0.001, n= 4). j Immunoblotting for cleaved
caspase3 in lysates from Control (NS siRNA), DKD, Control+ Flag-FoxK1/K2 and DKD+ Flag-tagged FoxK1/K2 after serum starvation 24 h. k
Densitometric analysis of cleaved caspase3 in the groups shown in panel i. (One-way ANOVA followed by t-test with Bonferroni correction, *P < 0.05;
**P < 0.01; ***P < 0.001, n= 4). All data are represented as mean ± SEM
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were lysed in 0.1% SDS solution and protein concentrations were measured and
used for normalization of OCR values.

Transmission electron microscopy. Cells were fixed in 0.1 M sodium phosphate
buffer containing 2.5% glutaraldehyde for 16 h and post-fixed with 2% osmium
tetroxide in Millonig Buffer, then processed in a standard manner and embedded
in BEEM capsules filled with Araldite resin. Semi-thin sections were cut at 1 μm
and stained with 1% toluidine blue to evaluate the quality of preservation. Ultrathin
sections (60–80 nm) were cut, mounted on copper grids and stained with uranyl
acetate and lead citrate by standard methods. Stained grids were examined and
photographed on a Philips 301 transmission electron microscope using a side
mount Infinity 2 digital camera with Infinity Camera V:3.1 software from Lume-
nera Scientific.

Chromatin immunoprecipitation (ChIP) assay. Cells were first stimulated with
insulin or saline and then cross-linked for 10 min by adding formaldehyde directly
to tissue culture medium to a final concentration of 1%. Cross-linked cells were
then washed twice with cold PBS, scraped, pelleted, resuspended in Chip lysis
buffer (0.5% NP40, 85 mM KCl, 10 mM HEPES (pH 8.0), 5 mM DTT, PMSF and
1× protease inhibitor cocktail), and incubated for 10 min on ice and spun for
10 min. The supernatant was discarded. The cell pellet was incubated in Nuclei
lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCL pH 8.0, 1× protease inhi-
bitor cocktail) for 10 min on ice then sonicated to produce chromatin fragments of
300–1000 bp. The samples were centrifuged, and the supernatants diluted in
dilution buffer with protease inhibitors and precleared with 50 μl protein A/G
magnetic beads for 1 h at 4 °C. Cross-linked chromatin was incubated 3 h with
10 μg FoxK1 antibody or control IgG at 4 °C. Antibody-protein-DNA complexes
were isolated by immunoprecipitation with 50 μl protein A/G magnetic beads.
After extensive washing, immune complexes were eluted using freshly prepared
elution buffer (50 mM Tris-Cl (pH 8.0), 10 mM EDTA, 1% SDS). Formaldehyde
cross-linking was reversed by overnight incubation at 65 °C. Samples were purified
by standard phenol:chloroform extraction and used as a template in PCR. The
primers used were as follows: Cdkn1B forward, 5’-GGCCGTTTGGCTAGTTT
GTT-3′ and reverse, 5′-CTGGTCGCGTGACTACTCG-3′; Ccng2 forward, 5′-TA
CTTTGGGCGGACTTTTCA-3′ and reverse, 5′-GCGGAAGGAGACAGTTTC
TG-3′; and reverse, 5′-GCGGAAGGAGACAGTTTCTG-3′. Samples from at least
three independent immunoprecipitations were analyzed.

Phosphoproteome sample preparation and LC-MS/MS. All samples were lysed
in SDS lysis buffer (4% SDS, 10 mM DTT, 10 mM HEPES pH 8), boiled and
sonicated, and precipitated overnight using ice-cold acetone (v/v= 80%). After
centrifugation at 4000×g, the pellet was washed twice with 80% ice-cold acetone
before air drying and resuspended with sonication in TFE buffer (10% 2-2-2-
trifluorethanol, 100 mM ammonium bicarbonate (ABC)). Proteins were digested
using LysC and trypsin (1:100), over-night at 37 °C. The following day, phos-
phopeptides were enriched as follows26. Peptides were loaded on a 50 cm reversed
phase column (75 µm inner diameter, packed in-house with ReproSil-Pur C18-AQ
1.9 µm resin [Dr. Maisch GmbH]). Column temperature was maintained at 60 °C
using a homemade column oven. An EASY-nLC 1200 system (Thermo Fisher
Scientific) was directly coupled online with the mass spectrometer (Q Exactive HF)
via a nano-electrospray source, and peptides were separated with a binary buffer
system of buffer A (0.1% formic acid (FA)) and buffer B (80% acetonitrile plus
0.1% FA), at a flow rate of 350 nl min−1. Peptides were eluted with a nonlinear 150-
min gradient of 5–60% buffer B (0.1% (v/v) formic acid, 80% (v/v) acetonitrile).
After each gradient, the column was washed with 95% buffer B for 5 min. The mass
spectrometer was programmed to acquire in a data-dependent mode (Top10) using
a fixed ion injection time strategy. Full scans were acquired in the Orbitrap mass
analyzer with resolution 60,000 at 200 m/z (3E6 ions were accumulated with a
maximum injection time of 10 ms). The top intensity ions (N for TopN) with
charge states ≥2 were sequentially isolated to a target value of 1E5 (maximum
injection time of 120 ms, 20% underfill), fragmented by HCD (NCE 27%) and
detected in the Orbitrap (R= 15,000 at m/z 200).

Data processing and analysis. Raw mass spectrometry data were processed using
MaxQuant version 1.5.3.1557,58 with an FDR < 0.01 at the level of proteins, pep-
tides, and modifications. Searches were performed against the Mouse UniProt
FASTA database (September 2015). Enzyme specificity was set to trypsin. The
search included cysteine carbamidomethylation as a fixed modification and N-
acetylation of protein, oxidation of methionine, and phosphorylation of Ser, Thr,
Tyr residue (PhosphoSTY) as variable modifications. Upto 2 missed cleavages were
allowed for protease digestion. ‘Match between runs’ was enabled, with a matching
time window of 0.7 min. Bioinformatic analyses and data visualization were per-
formed with Perseus (www.perseus-framework.org)59. Significance was assessed
using ANOVA analysis, for which replicates were grouped, and statistical tests
performed with permutation-based FDR correction for multiple hypothesis testing.
Missing data points were replaced by data imputation after filtering for valid values
(all valid values in at least one experimental group).

Statistics. All data are presented as mean ± SEM and analyzed by two-tailed
Student’s t test or one-way ANOVA followed by post hoc comparisons as
appropriate. N indicates the number of animals per group or number of inde-
pendent experiments. Results were considered significant if P < 0.05.

Data availability
RNA-seq data generated in this study are available at NCBI GEO database with the
accession number GSE110574 and can be accessed with the following access link:
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110574]. Proteomic data are
available at Github and can be accessed with the following access link: [https://github.
com/jdreyf/Foxk12-insulin]. All the other data in this study are available from the
corresponding author on reasonable request.
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