1,096 research outputs found
Exclusion processes in higher dimensions: Stationary measures and convergence
There has been significant progress recently in our understanding of the
stationary measures of the exclusion process on . The corresponding
situation in higher dimensions remains largely a mystery. In this paper we give
necessary and sufficient conditions for a product measure to be stationary for
the exclusion process on an arbitrary set, and apply this result to find
examples on and on homogeneous trees in which product measures are
stationary even when they are neither homogeneous nor reversible. We then begin
the task of narrowing down the possibilities for existence of other stationary
measures for the process on . In particular, we study stationary measures
that are invariant under translations in all directions orthogonal to a fixed
nonzero vector. We then prove a number of convergence results as
for the measure of the exclusion process. Under appropriate initial conditions,
we show convergence of such measures to the above stationary measures. We also
employ hydrodynamics to provide further examples of convergence.Comment: Published at http://dx.doi.org/10.1214/009117905000000341 in the
Annals of Probability (http://www.imstat.org/aop/) by the Institute of
Mathematical Statistics (http://www.imstat.org
On the Distribution of a Second Class Particle in the Asymmetric Simple Exclusion Process
We give an exact expression for the distribution of the position X(t) of a
single second class particle in the asymmetric simple exclusion process (ASEP)
where initially the second class particle is located at the origin and the
first class particles occupy the sites {1,2,...}
Ultra-discrete Optimal Velocity Model: a Cellular-Automaton Model for Traffic Flow and Linear Instability of High-Flux Traffic
In this paper, we propose the ultra-discrete optimal velocity model, a
cellular-automaton model for traffic flow, by applying the ultra-discrete
method for the optimal velocity model. The optimal velocity model, defined by a
differential equation, is one of the most important models; in particular, it
successfully reproduces the instability of high-flux traffic. It is often
pointed out that there is a close relation between the optimal velocity model
and the mKdV equation, a soliton equation. Meanwhile, the ultra-discrete method
enables one to reduce soliton equations to cellular automata which inherit the
solitonic nature, such as an infinite number of conservation laws, and soliton
solutions. We find that the theory of soliton equations is available for
generic differential equations, and the simulation results reveal that the
model obtained reproduces both absolutely unstable and convectively unstable
flows as well as the optimal velocity model.Comment: 9 pages, 6 figure
Queueing process with excluded-volume effect
We introduce an extension of the M/M/1 queueing process with a spatial
structure and excluded- volume effect. The rule of particle hopping is the same
as for the totally asymmetric simple exclusion process (TASEP). A
stationary-state solution is constructed in a slightly arranged matrix product
form of the open TASEP. We obtain the critical line that separates the
parameter space depending on whether the model has the stationary state. We
calculate the average length of the model and the number of particles and show
the monotonicity of the probability of the length in the stationary state. We
also consider a generalization of the model with backward hopping of particles
allowed and an alternate joined system of the M/M/1 queueing process and the
open TASEP.Comment: 9 figure
A new model of binary opinion dynamics: coarsening and effect of disorder
We propose a model of binary opinion in which the opinion of the individuals
change according to the state of their neighbouring domains. If the
neighbouring domains have opposite opinions, then the opinion of the domain
with the larger size is followed. Starting from a random configuration, the
system evolves to a homogeneous state. The dynamical evolution show novel
scaling behaviour with the persistence exponent and
dynamic exponent . Introducing disorder through a
parameter called rigidity coefficient (probability that people are
completely rigid and never change their opinion), the transition to a
heterogeneous society at is obtained. Close to , the
equilibrium values of the dynamic variables show power law scaling behaviour
with . We also discuss the effect of having both quenched and annealed
disorder in the system.Comment: 4 pages, 6 figures, Final version of PR
Phase transitions in a two parameter model of opinion dynamics with random kinetic exchanges
Recently, a model of opinion formation with kinetic exchanges has been
proposed in which a spontaneous symmetry breaking transition was reported [M.
Lallouache et al, Phys. Rev. E, {\bf 82} 056112 (2010)]. We generalise the
model to incorporate two parameters, , to represent conviction and
, to represent the influencing ability of individuals. A phase boundary
given by is obtained separating the symmetric and symmetry
broken phases: the effect of the influencing term enhances the possibility of
reaching a consensus in the society. The time scale diverges near the phase
boundary in a power law manner. The order parameter and the condensate also
show power law growth close to the phase boundary albeit with different
exponents. Theexponents in general change along the phase boundary indicating a
non-universality. The relaxation times, however, become constant with
increasing system size near the phase boundary indicating the absence of any
diverging length scale. Consistently, the fluctuations remain finite but show
strong dependence on the trajectory along which it is estimated.Comment: Version accepted for PRE; text modified, new figures and references
adde
Evolutionary dynamics on degree-heterogeneous graphs
The evolution of two species with different fitness is investigated on
degree-heterogeneous graphs. The population evolves either by one individual
dying and being replaced by the offspring of a random neighbor (voter model
(VM) dynamics) or by an individual giving birth to an offspring that takes over
a random neighbor node (invasion process (IP) dynamics). The fixation
probability for one species to take over a population of N individuals depends
crucially on the dynamics and on the local environment. Starting with a single
fitter mutant at a node of degree k, the fixation probability is proportional
to k for VM dynamics and to 1/k for IP dynamics.Comment: 4 pages, 4 figures, 2 column revtex4 format. Revisions in response to
referee comments for publication in PRL. The version on arxiv.org has one
more figure than the published PR
Site-bond representation and self-duality for totalistic probabilistic cellular automata
We study the one-dimensional two-state totalistic probabilistic cellular
automata (TPCA) having an absorbing state with long-range interactions, which
can be considered as a natural extension of the Domany-Kinzel model. We
establish the conditions for existence of a site-bond representation and
self-dual property. Moreover we present an expression of a set-to-set
connectedness between two sets, a matrix expression for a condition of the
self-duality, and a convergence theorem for the TPCA.Comment: 11 pages, minor corrections, journal reference adde
Bulk and surface transitions in asymmetric simple exclusion process: Impact on boundary layers
In this paper, we study boundary-induced phase transitions in a particle
non-conserving asymmetric simple exclusion process with open boundaries. Using
boundary layer analysis, we show that the key signatures of various bulk phase
transitions are present in the boundary layers of the density profiles. In
addition, we also find possibilities of surface transitions in the low- and
high- density phases. The surface transition in the low-density phase provides
a more complete description of the non-equilibrium critical point found in this
system.Comment: 9 pages including figure
Noise driven dynamic phase transition in a a one dimensional Ising-like model
The dynamical evolution of a recently introduced one dimensional model in
\cite{biswas-sen} (henceforth referred to as model I), has been made stochastic
by introducing a parameter such that corresponds to the
Ising model and to the original model I. The equilibrium
behaviour for any value of is identical: a homogeneous state. We
argue, from the behaviour of the dynamical exponent ,that for any , the system belongs to the dynamical class of model I indicating a
dynamic phase transition at . On the other hand, the persistence
probabilities in a system of spins saturate at a value , where remains constant for all supporting the existence of the dynamic phase transition at .
The scaling function shows a crossover behaviour with for and for
.Comment: 4 pages, 5 figures, accepted version in Physical Review
- …