We study the one-dimensional two-state totalistic probabilistic cellular
automata (TPCA) having an absorbing state with long-range interactions, which
can be considered as a natural extension of the Domany-Kinzel model. We
establish the conditions for existence of a site-bond representation and
self-dual property. Moreover we present an expression of a set-to-set
connectedness between two sets, a matrix expression for a condition of the
self-duality, and a convergence theorem for the TPCA.Comment: 11 pages, minor corrections, journal reference adde