1,858 research outputs found

    Measurements of the cosmic background radiation

    Get PDF
    Maps of the large scale structure (theta is greater than 6 deg) of the cosmic background radiation covering 90 percent of the sky are now available. The data show a very strong 50-100 sigma (statistical error) dipole component, interpreted as being due to our motion, with a direction of alpha = 11.5 + or - 0.15 hours, sigma = -5.6 + or - 2.0 deg. The inferred direction of the velocity of our galaxy relative to the cosmic background radiation is alpha = 10.6 + or - 0.3 hours, sigma = -2.3 + or - 5 deg. This is 44 deg from the center of the Virgo cluster. After removing the dipole component, the data show a galactic signature but no apparent residual structure. An autocorrelation of the residual data, after substraction of the galactic component from a combined Berkeley (3 mm) and Princeton (12 mm) data sets, show no apparent structure from 10 to 180 deg with a rms of 0.01 mK(sup 2). At 90 percent confidence level limit of .00007 is placed on a quadrupole component

    Global Distribution of Water Vapor and Cloud Cover--Sites for High Performance THz Applications

    Full text link
    Absorption of terahertz radiation by atmospheric water vapor is a serious impediment for radio astronomy and for long-distance communications. Transmission in the THz regime is dependent almost exclusively on atmospheric precipitable water vapor (PWV). Though much of the Earth has PWV that is too high for good transmission above 200 GHz, there are a number of dry sites with very low attenuation. We performed a global analysis of PWV with high-resolution measurements from the Moderate Resolution Imaging Spectrometer (MODIS) on two NASA Earth Observing System (EOS) satellites over the year of 2011. We determined PWV and cloud cover distributions and then developed a model to find transmission and atmospheric radiance as well as necessary integration times in the various windows. We produced global maps over the common THz windows for astronomical and satellite communications scenarios. Notably, we show that up through 1 THz, systems could be built in excellent sites of Chile, Greenland and the Tibetan Plateau, while Antarctic performance is good to 1.6 THz. For a ground-to-space communication link up through 847 GHz, we found several sites in the Continental United States where mean atmospheric attenuation is less than 40 dB; not an insurmountable challenge for a link.Comment: 15 pages, 23 figure

    QSO 0130-4021: A third QSO showing a low Deuterium to Hydrogen Abundance Ratio

    Get PDF
    We have discovered a third quasar absorption system which is consistent with a low deuterium to hydrogen abundance ratio, D/H = 3.4 times 10^-5. The z ~ 2.8 partial Lyman limit system towards QSO 0130-4021 provides the strongest evidence to date against large D/H ratios because the H I absorption, which consists of a single high column density component with unsaturated high order Lyman series lines, is readily modeled -- a task which is more complex in other D/H systems. We have obtained twenty-two hours of spectra from the HIRES spectrograph on the W.M. Keck telescope, which allow a detailed description of the Hydrogen. We see excess absorption on the blue wing of the H I Lyman alpha line, near the expected position of Deuterium. However, we find that Deuterium cannot explain all of the excess absorption, and hence there must be contamination by additional absorption, probably H I. This extra H I can account for most or all of the absorption at the D position, and hence D/H = 0 is allowed. We find an upper limit of D/H < 6.7 times 10^-5 in this system, consistent with the value of D/H ~ 3.4 times 10^-5 deduced towards QSO 1009+2956 and QSO 1937-1009 by Burles and Tytler (1998a, 1998b). This absorption system shows only weak metal line absorption, and we estimate [Si/H] < -2.6 -- indicating that the D/H ratio of the system is likely primordial. All four of the known high redshift absorption line systems simple enough to provide useful limits on D are consistent with D/H = 3.4 +/- 0.25 times 10^-5. Conversely, this QSO provides the third case which is inconsistent with much larger values.Comment: 18 pages, 5 figures, submitted to Ap

    Galois covers of the open p-adic disc

    Full text link
    This paper investigates Galois branched covers of the open pp-adic disc and their reductions to characteristic pp. Using the field of norms functor of Fontaine and Wintenberger, we show that the special fiber of a Galois cover is determined by arithmetic and geometric properties of the generic fiber and its characteristic zero specializations. As applications, we derive a criterion for good reduction in the abelian case, and give an arithmetic reformulation of the local Oort Conjecture concerning the liftability of cyclic covers of germs of curves.Comment: 19 pages; substantial organizational and expository changes; this is the final version corresponding to the official publication in Manuscripta Mathematica; abstract update

    Analytical Model for the Magnetic Field Distribution in a Flux Modulation Superconducting Machine

    Get PDF
    International audienceThis paper presents a theoretical analysis of an axial field machine using High Temperature Superconductors (HTS) wires and bulks. The air-gap magnetic field obtained with the HTS coil and modulated by the HTS bulks is predicted by two 2D axisymmetric models. Analytical models are based on the solution of Laplace's equation by the separation of variable method. The torque is obtained by a quick numerical integration of the Laplace force that acts on the armature winding. The proposed model is compared with 3D finite element simulations and good agreement is obtained. This model can be used with an optimization design procedure with a large reduction of the computational time

    Construction and Test of a Flux Modulation Superconducting Machine for Aircraft

    Get PDF
    International audienceThe increasing of drives towards More Electric Aircraft (MEA) or the development of electric propulsion aircraft calls for MW-class electrical machines with more compact and power dense designs. One way is to explore the use of superconducting materials to create a high magnetic field in order to reduce the mass of ferromagnetic components. This paper presents the construction and the test of a brushless axial flux superconducting machine. The brushless topology satisfies the aeronautics industry requirements in terms of maintenance, while the axial configuration ensures an optimal use of the anisotropic HTS tapes. The machine is classed as partially superconducting, only the inductor is made with superconducting materials. A special design concerning the use of a stationary cryostat is presented. This improvement reduces significantly the electromagnetic air-gap length. A 50kW prototype is manufactured with a minimal mass objective. The prototype constitutes a first step to a scale-up MW-class machine design

    Resolving the emission transition dipole moments of single doubly-excited seeded nanorods via heralded defocused imaging

    Full text link
    Semiconductor nanocrystal emission polarization is a crucial probe of nanocrystal physics and an essential factor for nanocrystal-based technologies. While the transition dipole moment of the lowest excited state to ground state transition is well characterized, the dipole moment of higher multiexcitonic transitions is inaccessible via most spectroscopy techniques. Here, we realize direct characterization of the doubly-excited state relaxation transition dipole by heralded defocused imaging. Defocused imaging maps the dipole emission pattern onto a fast single-photon avalanche diode detector array, allowing the post-selection of photon pairs emitted from the biexciton-exciton emission cascade and resolving the differences in transition dipole moments. Type-I1/2 seeded nanorods exhibit higher anisotropy of the biexciton-to-exciton transition compared to the exciton-to-ground state transition. In contrast, type-II seeded nanorods display a reduction of biexciton emission anisotropy. These findings are rationalized in terms of an interplay between transient dynamics of the refractive index and the excitonic fine structure

    A Spin Modulated Telescope to Make Two Dimensional CMB Maps

    Get PDF
    We describe the HEMT Advanced Cosmic Microwave Explorer (HACME), a balloon borne experiment designed to measure sub-degree scale Cosmic Microwave Background anisotropy over hundreds of square degrees, using a unique two dimensional scanning strategy. A spinning flat mirror that is canted relative to its spin axis modulates the direction of beam response in a nearly elliptical path on the sky. The experiment was successfully flown in February of 1996, achieving near laboratory performance for several hours at float altitude. A map free of instrumental systematic effects is produced for a 3.5 hour observation of 630 square degrees, resulting in a flat band power upper limit of (l(l+1)C_l/2 pi)^0.5 < 77 microK at l = 38 (95% confidence). The experiment design, flight operations and data, including atmospheric effects and noise performance, are discussed.Comment: 4 pages, 3 figure

    Magnetically geared induction machines

    Get PDF
    A wound-rotor induction machine is artfully coupled to a magnetic gear to achieve a high-torque-density drive system called magnetically geared induction machine (MaGIM). The high-speed rotor of MaGIM is common to both the machine and gear sides. A rotating diode rectifier electrically links the machine's wound rotor and a dc boost winding on the gear side to increase the torque-transmission capabilities of the overall system. The first investigations on a 100 kW-120 r/min MaGIM are promising, since an increase in torque of ∼ 15% could be obtained by inserting the diode rectifier. For fixed speed applications, this induction-machine-based system can be directly supplied from the main
    corecore