351 research outputs found
Two-dimensional, Time-dependent, Multi-group, Multi-angle Radiation Hydrodynamics Test Simulation in the Core-Collapse Supernova Context
We have developed a time-dependent, multi-energy-group, and multi-angle
(S) Boltzmann transport scheme for radiation hydrodynamics simulations, in
one and two spatial dimensions. The implicit transport is coupled to both 1D
(spherically-symmetric) and 2D (axially-symmetric) versions of the explicit
Newtonian hydrodynamics code VULCAN. The 2D variant, VULCAN/2D, can be operated
in general structured or unstructured grids and though the code can address
many problems in astrophysics it was constructed specifically to study the
core-collapse supernova problem. Furthermore, VULCAN/2D can simulate the
radiation/hydrodynamic evolution of differentially rotating bodies. We
summarize the equations solved and methods incorporated into the algorithm and
present results of a time-dependent 2D test calculation. A more complete
description of the algorithm is postponed to another paper. We highlight a 2D
test run that follows for 22 milliseconds the immediate post-bounce evolution
of a collapsed core. We present the relationship between the anisotropies of
the overturning matter field and the distribution of the corresponding flux
vectors, as a function of energy group. This is the first 2D multi-group,
multi-angle, time-dependent radiation/hydro calculation ever performed in core
collapse studies. Though the transport module of the code is not gray and does
not use flux limiters (however, there is a flux-limited variant of VULCAN/2D),
it still does not include energy redistribution and most velocity-dependent
terms.Comment: 19 pages, plus 13 figures in JPEG format. Submitted to the
Astrophysical Journa
Features of the Acoustic Mechanism of Core-Collapse Supernova Explosions
In the context of 2D, axisymmetric, multi-group, radiation/hydrodynamic
simulations of core-collapse supernovae over the full 180 domain, we
present an exploration of the progenitor dependence of the acoustic mechanism
of explosion. All progenitor models we have tested with our Newtonian code
explode. We investigate the roles of the Standing-Accretion-Shock-Instability
(SASI), the excitation of core g-modes, the generation of core acoustic power,
the ejection of matter with r-process potential, the wind-like character of the
explosion, and the fundamental anisotropy of the blasts. We find that the
breaking of spherical symmetry is central to the supernova phenomenon and the
blasts, when top-bottom asymmetric, are self-collimating. We see indications
that the initial explosion energies are larger for the more massive
progenitors, and smaller for the less massive progenitors, and that the
neutrino contribution to the explosion energy may be an increasing function of
progenitor mass. The degree of explosion asymmetry we obtain is completely
consistent with that inferred from the polarization measurements of Type Ic
supernovae. Furthermore, we calculate for the first time the magnitude and sign
of the net impulse on the core due to anisotropic neutrino emission and suggest
that hydrodynamic and neutrino recoils in the context of our asymmetric
explosions afford a natural mechanism for observed pulsar proper motions.
[abridged]Comment: Accepted to the Astrophysical Journal, 23 pages in emulateapj format,
including 12 figure
The Spin Periods and Rotational Profiles of Neutron Stars at Birth
We present results from an extensive set of one- and two-dimensional
radiation-hydrodynamic simulations of the supernova core collapse, bounce, and
postbounce phases, and focus on the protoneutron star (PNS) spin periods and
rotational profiles as a function of initial iron core angular velocity, degree
of differential rotation, and progenitor mass. For the models considered, we
find a roughly linear mapping between initial iron core rotation rate and PNS
spin. The results indicate that the magnitude of the precollapse iron core
angular velocities is the single most important factor in determining the PNS
spin. Differences in progenitor mass and degree of differential rotation lead
only to small variations in the PNS rotational period and profile. Based on our
calculated PNS spins, at ~ 200-300 milliseconds after bounce, and assuming
angular momentum conservation, we estimate final neutron star rotation periods.
We find periods of one millisecond and shorter for initial central iron core
periods of below ~ 10 s. This is appreciably shorter than what previous studies
have predicted and is in disagreement with current observational data from
pulsar astronomy. After considering possible spindown mechanisms that could
lead to longer periods we conclude that there is no mechanism that can robustly
spin down a neutron star from ~ 1 ms periods to the "injection" periods of tens
to hundreds of milliseconds observed for young pulsars. Our results indicate
that, given current knowledge of the limitations of neutron star spindown
mechanisms, precollapse iron cores must rotate with periods around 50-100
seconds to form neutron stars with periods generically near those inferred for
the radio pulsar population.Comment: 31 pages, including 20 color figures. High-resolution figures
available from the authors upon request. Accepted to Ap
2D Multi-Angle, Multi-Group Neutrino Radiation-Hydrodynamic Simulations of Postbounce Supernova Cores
We perform axisymmetric (2D) multi-angle, multi-group neutrino
radiation-hydrodynamic calculations of the postbounce phase of core-collapse
supernovae using a genuinely 2D discrete-ordinate (S_n) method. We follow the
long-term postbounce evolution of the cores of one nonrotating and one
rapidly-rotating 20-solar-mass stellar model for ~400 milliseconds from 160 ms
to ~550 ms after bounce. We present a multi-D analysis of the multi-angle
neutrino radiation fields and compare in detail with counterpart simulations
carried out in the 2D multi-group flux-limited diffusion (MGFLD) approximation
to neutrino transport. We find that 2D multi-angle transport is superior in
capturing the global and local radiation-field variations associated with
rotation-induced and SASI-induced aspherical hydrodynamic configurations. In
the rotating model, multi-angle transport predicts much larger asymptotic
neutrino flux asymmetries with pole to equator ratios of up to ~2.5, while
MGFLD tends to sphericize the radiation fields already in the optically
semi-transparent postshock regions. Along the poles, the multi-angle
calculation predicts a dramatic enhancement of the neutrino heating by up to a
factor of 3, which alters the postbounce evolution and results in greater polar
shock radii and an earlier onset of the initially rotationally weakened SASI.
In the nonrotating model, differences between multi-angle and MGFLD
calculations remain small at early times when the postshock region does not
depart significantly from spherical symmetry. At later times, however, the
growing SASI leads to large-scale asymmetries and the multi-angle calculation
predicts up to 30% higher average integral neutrino energy deposition rates
than MGFLD.Comment: 20 pages, 21 figures. Minor revisions. Accepted for publication in
ApJ. A version with high-resolution figures may be obtained from
http://www.stellarcollapse.org/papers/Ott_et_al2008_multi_angle.pd
Theoretical Support for the Hydrodynamic Mechanism of Pulsar Kicks
The collapse of a massive star's core, followed by a neutrino-driven,
asymmetric supernova explosion, can naturally lead to pulsar recoils and
neutron star kicks. Here, we present a two-dimensional, radiation-hydrodynamic
simulation in which core collapse leads to significant acceleration of a
fully-formed, nascent neutron star (NS) via an induced, neutrino-driven
explosion. During the explosion, a ~10% anisotropy in the low-mass,
high-velocity ejecta lead to recoil of the high-mass neutron star. At the end
of our simulation, the NS has achieved a velocity of ~150 km s and is
accelerating at ~350 km s, but has yet to reach the ballistic regime.
The recoil is due almost entirely to hydrodynamical processes, with anisotropic
neutrino emission contributing less than 2% to the overall kick magnitude.
Since the observed distribution of neutron star kick velocities peaks at
~300-400 km s, recoil due to anisotropic core-collapse supernovae
provides a natural, non-exotic mechanism with which to obtain neutron star
kicks.Comment: Replaced with Phys. Rev. D accepted versio
Role of dynamic Jahn-Teller distortions in Na2C60 and Na2CsC60 studied by NMR
Through 13C NMR spin lattice relaxation (T1) measurements in cubic Na2C60, we
detect a gap in its electronic excitations, similar to that observed in
tetragonal A4C60. This establishes that Jahn-Teller distortions (JTD) and
strong electronic correlations must be considered to understand the behaviour
of even electron systems, regardless of the structure. Furthermore, in metallic
Na2CsC60, a similar contribution to T1 is also detected for 13C and 133Cs NMR,
implying the occurence of excitations typical of JT distorted C60^{2-} (or
equivalently C60^{4-}). This supports the idea that dynamic JTD can induce
attractive electronic interactions in odd electron systems.Comment: 3 figure
Multi-Dimensional Simulations of the Accretion-Induced Collapse of White Dwarfs to Neutron Stars
We present 2.5D radiation-hydrodynamics simulations of the accretion-induced
collapse (AIC) of white dwarfs, starting from 2D rotational equilibrium
configurations of a 1.46-Msun and a 1.92-Msun model. Electron capture leads to
the collapse to nuclear densities of these cores within a few tens of
milliseconds. The shock generated at bounce moves slowly, but steadily,
outwards. Within 50-100ms, the stalled shock breaks out of the white dwarf
along the poles. The blast is followed by a neutrino-driven wind that develops
within the white dwarf, in a cone of ~40deg opening angle about the poles, with
a mass loss rate of 5-8 x 10^{-3} Msun/yr. The ejecta have an entropy on the
order of 20-50 k_B/baryon, and an electron fraction distribution that is
bimodal. By the end of the simulations, at >600ms after bounce, the explosion
energy has reached 3-4 x 10^{49}erg and the total ejecta mass has reached a few
times 0.001Msun. We estimate the asymptotic explosion energies to be lower than
10^{50}erg, significantly lower than those inferred for standard core collapse.
The AIC of white dwarfs thus represents one instance where a neutrino mechanism
leads undoubtedly to a successful, albeit weak, explosion.
We document in detail the numerous effects of the fast rotation of the
progenitors: The neutron stars are aspherical; the ``nu_mu'' and anti-nu_e
neutrino luminosities are reduced compared to the nu_e neutrino luminosity; the
deleptonized region has a butterfly shape; the neutrino flux and electron
fraction depend strongly upon latitude (a la von Zeipel); and a quasi-Keplerian
0.1-0.5-Msun accretion disk is formed.Comment: 25 pages, 19 figures, accpeted to ApJ, high resolution of the paper
and movies available at http://hermes.as.arizona.edu/~luc/aic/aic.htm
Gravitational Waves from Axisymmetric, Rotational Stellar Core Collapse
We have carried out an extensive set of two-dimensional, axisymmetric,
purely-hydrodynamic calculations of rotational stellar core collapse with a
realistic, finite-temperature nuclear equation of state and realistic massive
star progenitor models. For each of the total number of 72 different
simulations we performed, the gravitational wave signature was extracted via
the quadrupole formula in the slow-motion, weak-field approximation. We
investigate the consequences of variation in the initial ratio of rotational
kinetic energy to gravitational potential energy and in the initial degree of
differential rotation. Furthermore, we include in our model suite progenitors
from recent evolutionary calculations that take into account the effects of
rotation and magnetic torques. For each model, we calculate gravitational
radiation wave forms, characteristic wave strain spectra, energy spectra, final
rotational profiles, and total radiated energy. In addition, we compare our
model signals with the anticipated sensitivities of the 1st- and 2nd-generation
LIGO detectors coming on line. We find that most of our models are detectable
by LIGO from anywhere in the Milky Way.Comment: 13 pages, 22 figures, accepted for publication in ApJ (v600, Jan.
2004). Revised version: Corrected typos and minor mistakes in text and
references. Minor additions to the text according to the referee's
suggestions, conclusions unchange
Anisotropies in the Neutrino Fluxes and Heating Profiles in Two-dimensional, Time-dependent, Multi-group Radiation Hydrodynamics Simulations of Rotating Core-Collapse Supernovae
Using the 2D multi-group, flux-limited diffusion version of the code
VULCAN/2D, that also incorporates rotation, we have calculated the collapse,
bounce, shock formation, and early post-bounce evolutionary phases of a
core-collapse supernova for a variety of initial rotation rates. This is the
first series of such multi-group calculations undertaken in supernova theory
with fully multi-D tools. We find that though rotation generates
pole-to-equator angular anisotropies in the neutrino radiation fields, the
magnitude of the asymmetries is not as large as previously estimated. Moreover,
we find that the radiation field is always more spherically symmetric than the
matter distribution, with its plumes and convective eddies. We present the
dependence of the angular anisotropy of the neutrino fields on neutrino
species, neutrino energy, and initial rotation rate. Only for our most rapidly
rotating model do we start to see qualitatively different hydrodynamics, but
for the lower rates consistent with the pre-collapse rotational profiles
derived in the literature the anisotropies, though interesting, are modest.
This does not mean that rotation does not play a key role in supernova
dynamics. The decrease in the effective gravity due to the centripetal effect
can be quite important. Rather, it means that when a realistic mapping between
initial and final rotational profiles and 2D multi-group
radiation-hydrodynamics are incorporated into collapse simulations the
anisotropy of the radiation fields may be only a secondary, not a pivotal
factor, in the supernova mechanism.Comment: Includes 11 low-resolution color figures, accepted to the
Astrophysical Journal (June 10, 2005; V. 626); high-resolution figures and
movies available from the authors upon reques
Experimental Investigation of a Flexible Wing with a Variable Camber Continuous Trailing Edge Flap Design
This paper presents experimental results of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization, tested at the University of Washington Aeronautical Labo- ratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10-scaled model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing, while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10 of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data indicate a high degree of data correlation and repeata- bility. The VCCTEF can achieve a drag reduction of up to 6.31 and an improvement in the lift-to-drag ratio (LD) of up to 4.85. The paper also presents two methods for estimating the lift coefficient of a rigid wing using a dynamic pressure correction and an aeroelastic deflection correction. Both methods provide good estimates of the rigid-wing lift coefficient
- âŠ