2,481 research outputs found

    Three-point correlations for quantum star graphs

    Full text link
    We compute the three point correlation function for the eigenvalues of the Laplacian on quantum star graphs in the limit where the number of edges tends to infinity. This extends a work by Berkolaiko and Keating, where they get the 2-point correlation function and show that it follows neither Poisson, nor random matrix statistics. It makes use of the trace formula and combinatorial analysis.Comment: 10 pages, 2 figure

    Pressure Line Broadening and Feasibility of CO_2 Profile Retrieval using Near Infrared Observations of an Absorption Line

    Get PDF
    Analytic expressions are derived for the transmittance and reflectance of sunlight and their Jacobians for an absorption line with Lorentz line broadening. Rodgers information analysis is applied to calculate the information content, the degrees of freedom and the averaging kernel for a simple atmospheric model to investigate the feasibility of retrieving the profile of CO_2 using near-infrared (NIR) measurements over a single absorption line. The results have implications for the design of future space instruments with high spectral resolution and high signal to noise ratios to obtain global scale information on the CO_2 vertical distribution which is important for inferring the sources, sinks, and transport of CO_2

    Behavioral and other phenotypes in a cytoplasmic Dynein light intermediate chain 1 mutant mouse

    Get PDF
    The cytoplasmic dynein complex is fundamentally important to all eukaryotic cells for transporting a variety of essential cargoes along microtubules within the cell. This complex also plays more specialized roles in neurons. The complex consists of 11 types of protein that interact with each other and with external adaptors, regulators and cargoes. Despite the importance of the cytoplasmic dynein complex, we know comparatively little of the roles of each component protein, and in mammals few mutants exist that allow us to explore the effects of defects in dynein-controlled processes in the context of the whole organism. Here we have taken a genotype-driven approach in mouse (Mus musculus) to analyze the role of one subunit, the dynein light intermediate chain 1 (Dync1li1). We find that, surprisingly, an N235Y point mutation in this protein results in altered neuronal development, as shown from in vivo studies in the developing cortex, and analyses of electrophysiological function. Moreover, mutant mice display increased anxiety, thus linking dynein functions to a behavioral phenotype in mammals for the first time. These results demonstrate the important role that dynein-controlled processes play in the correct development and function of the mammalian nervous system
    corecore