15,248 research outputs found
Refining the process of sharing problem-solving experience across domain: a hermeneutic study
Isospin particle on with arbitrary number of supersymmetries
We study the supersymmetric quantum mechanics of an isospin particle in the
background of spherically symmetric Yang-Mills gauge field. We show that on
the number of supersymmetries can be made arbitrarily large for a
specific choice of the spherically symmetric SU(2) gauge field. However, the
symmetry algebra containing the supercharges becomes nonlinear if the number of
fermions is greater than two. We present the exact energy spectra and
eigenfunctions, which can be written as the product of monopole harmonics and a
certain isospin state. We also find that the supersymmetry is spontaneously
broken if the number of supersymmetries is even.Comment: 6 page
Emissions of plant protection products from glasshouses to surface water in The Netherlands
Momenteel wordt een vast percentage van 0.1% gebruikt voor de emissie van gewasbeschermingsmiddelen vanuit kassen naar het oppervlaktewater. Metingsgegevens van waterschappen wijzen erop dat de emissie van gewasbeschermingsmiddelen en biociden naar het oppervlaktewater hoger zijn dan aangenomen wordt in de toelatingsprocedure. Dit rapport onderzoekt of nieuwe benaderingen nodig zijn. De onderzoeksresultaten duiden er op dat de werkelijke emissie sterk verschilt tussen verschillende gewassen, teeltsystemen en toedieningswijzen. Dit zou in de evaluatie van de emissie meegenomen moeten worden
High Rayleigh number convection with double diffusive fingers
An electrodeposition cell is used to sustain a destabilizing concentration
difference of copper ions in aqueous solution between the top and bottom
boundaries of the cell. The resulting convecting motion is analogous to
Rayleigh-B\'enard convection at high Prandtl numbers. In addition, a
stabilizing temperature gradient is imposed across the cell. Even for thermal
buoyancy two orders of magnitude smaller than chemical buoyancy, the presence
of the weak stabilizing gradient has a profound effect on the convection
pattern. Double diffusive fingers appear in all cases. The size of these
fingers and the flow velocities are independent of the height of the cell, but
they depend on the ion concentration difference between top and bottom
boundaries as well as on the imposed temperature gradient. The scaling of the
mass transport is compatible with previous results on double diffusive
convection
Distribution of genetic diversity in wild European populations of prickly lettuce (Lactuca serriola): implications for plant genetic resources management
Genetic variation in Lactuca serriola, the closest wild relative of cultivated lettuce, was studied across Europe from the Czech Republic to the United Kingdom, using three molecular marker systems, simple sequence repeat (SSR, microsatellites), AFLP and nucleotide-binding site (NBS) profiling. The ‘functional’ marker system NBS profiling, targeting disease resistance genes of the NBS/LRR family, did not show marked differences in genetic diversity parameters to the other systems. The autogamy of the species resulted in low observed heterozygosity and high population differentiation. Intra-population variation ranged from complete homogeneity to nearly complete heterogeneity. The highest genetic diversity was found in central Europe. The SSR results were compared to SSR variation screened earlier in the lettuce collection of the Centre for Genetic Resources, the Netherlands (CGN). In the UK, practically only a single SSR genotype was found. This genotype together with a few other common SSR genotypes comprised a large part of the plants sampled on the continent. Among the ten most frequent SSR genotypes observed, eight were already present in the CGN collection. Overall, the CGN collection appears to already have a fair representation of genetic variation from NW Europe. The results are discussed in relation to sampling strategies for improving genebank collections of crop wild relatives
From ternary to binary base and back
We describe a two-state machine which converts a number given in ternary base to this number in binary base—or vice versa
Emissions of plant protection products to surface water from soilless greenhouse cropping systems
Spatially Resolved Excitation of Rydberg Atoms and Surface Effects on an Atom Chip
We demonstrate spatially resolved, coherent excitation of Rydberg atoms on an
atom chip. Electromagnetically induced transparency (EIT) is used to
investigate the properties of the Rydberg atoms near the gold coated chip
surface. We measure distance dependent shifts (~10 MHz) of the Rydberg energy
levels caused by a spatially inhomogeneous electric field. The measured field
strength and distance dependence is in agreement with a simple model for the
electric field produced by a localized patch of Rb adsorbates deposited on the
chip surface during experiments. The EIT resonances remain narrow (< 4 MHz) and
the observed widths are independent of atom-surface distance down to ~20 \mum,
indicating relatively long lifetime of the Rydberg states. Our results open the
way to studies of dipolar physics, collective excitations, quantum metrology
and quantum information processing involving interacting Rydberg excited atoms
on atom chips
Error Filtration and Entanglement Purification for Quantum Communication
The key realisation which lead to the emergence of the new field of quantum
information processing is that quantum mechanics, the theory that describes
microscopic particles, allows the processing of information in fundamentally
new ways. But just as in classical information processing, errors occur in
quantum information processing, and these have to be corrected. A fundamental
breakthrough was the realisation that quantum error correction is in fact
possible. However most work so far has not been concerned with technological
feasibility, but rather with proving that quantum error correction is possible
in principle. Here we describe a method for filtering out errors and
entanglement purification which is particularly suitable for quantum
communication. Our method is conceptually new, and, crucially, it is easy to
implement in a wide variety of physical systems with present day technology and
should therefore be of wide applicability.Comment: 23 pages (latex) and 4 postscript figure
- …
