
From ternary to binary base

and back
by N. MARTINS-FERREIRA AND T. VAN DER LINDEN

Abstract

We describe a two-state machine which con-

verts a number given in ternary base to this num-

ber in binary base—or vice versa.

Ternary and binary base

Sometimes a number given in one base (say 2100012,
base 3) has to be converted to another base (say base
2, then its expansion becomes 11010101010). We explain
that—for use, for instance, in an electronic circuit—a
two-state machine is all you need to efficiently convert a
number between ternary and binary base. Moreover, this
procedure is easily extended to other bases.

Expressing a natural number in binary base is a mat-
ter of repeatedly dividing the number by two and record-
ing the remainders of those divisions. Indeed, the bi-
nary expansion of a natural number n is a finite string
xkxk−1 . . . x1x0 of zeros and ones, so xi ∈ {0, 1} for all
0 ≤ i ≤ k, such that

n =
k∑

i=0

xi2
i.

When dividing this number by 2, we find xk . . . x1 as the
binary expansion of the quotient, and x0 as the remainder
of the division, because

n =
k∑

i=0

xi2
i = x0 +

k∑

i=1

xi2
i = x0 +

k−1∑

j=0

xj+12
j+1

= x0 + 2 ·
k−1∑

j=0

xj+12
j .

Repeating this process k times on the number n, we ob-
tain its entire binary expansion.

When the number is given in ternary base, the division
itself becomes a particularly simple process which may be
performed by a small two-state machine. Moreover, this
process is reversible, so that converting a binary number
to ternary base may be done by running the same ma-
chine backwards.

Finite state machines

A finite state machine is a machine with a finite number of
inputs and outputs and a finite number of internal states.
This is usually modeled as a five-tuple

M = (I,O, S, s0, w)

where I and O are the respective sets of inputs and out-
puts, and S is the set of states. s0 ∈ S is a chosen initial
state for M : the state to which it returns when the ma-
chine is reset. The “internal wiring” of the machine M

is captured in the transition function w : I × S → O × S.
For a given input i ∈ I and a given state s ∈ S it returns
a pair (o, t) = w(i, s) ∈ O × S, where o is the machine’s
output and t is its new state. Since the sets I, O and S are
all finite, the transition function w may be conveniently
expressed in a table or in a diagram.

A two-state machine

As explained above, a conversion between ternary and bi-
nary base is done by dividing a given ternary number by
two again and again, each time recording the remainder
of this division. Dividing a ternary number by two can
be done by repeatedly applying a small machine M1 to
it which knows how to divide a ternary digit (0, 1 or 2)
by two. At each step, the output should be the quotient
of the division, while the remainder is remembered as an
internal state.

So we have {0, 1, 2} = I = O as set of inputs and out-
puts and S = {0, 1} as set of internal states for our M1:
the remainder of a division by 2 is either 0 or 1. The state
0, which is also the machine’s initial state s0, means that
in its last run the remainder of the division was 0. The
transition function w is given by the table

w 0 1
0 (0, 0) (1, 1)
1 (0, 1) (2, 0)
2 (1, 0) (2, 1)

while the entire machine may be pictured in one diagram
as follows.

0

0

�� 1→0
++

2→1

0→0

:: 1
2→2

0→1

dd
1→2

kk (1)

An arrow from state s to state t labeled with i → o is
to be understood as the behavior of the machine when
it reads input i with internal state s, producing output o
and changing to internal state t.

Given (i, s) ∈ I × S, the output o is the quotient, and
the new internal state t is the remainder, of s·3+i divided
by 2. For instance, 1 divided by 2 is 0 with remainder 1.
If now the machine remembers a remainder 1 from the
previous division and the input is again 1, then we have
1 · 3 + 1 = 4 (base 10) to divide by 2, which is 2 with
remainder 0. Indeed 11 (base 3) divided by 2 is 2 (base
3).

The following example illustrates the entire proce-
dure for the number 2100012 (base 3, which is 1706 in

Scripta-Ingenia, Winter Solstice, December 21, 2013. (ISSN: 2183-6000)
m http://cdrsp.ipleiria.pt T (351) 244-569441 B scripta.ingenia@ipleiria.pt Page 21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IC-online

https://core.ac.uk/display/61798048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


REFERENCES

base 10).

2 1 0 0 0 1 2

1 0 1 1 1 2 1 0
0 1 2 0 2 1 0 1
0 0 2 1 2 2 0 0
0 0 1 0 2 2 1 1
0 0 0 1 2 2 2 0
0 0 0 0 2 2 2 1
0 0 0 0 1 1 1 0
0 0 0 0 0 2 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

The result of the process is the binary word 11010101010,
the right hand side column of remainders read from bot-
tom to top. The machine passes over the first row from
left to right, which produces the quotient 1011121 and
remainder 0, the machine’s final internal state. Then it is
reset, after which it passes over the quotient in the second
row to produce the number 0120210 and the remainder 1.
This continues until the quotient is zero as in the last row.

Reversing the process

To obtain the ternary expansion of a number given in base
2, it suffices to reverse the process explained above. Run-
ning the machine M1 backwards (from right to left) on
the last row of zeros in the example, starting with initial
internal state 1, gives the next-to-last row 0000001. Thus
we move up in the table until we arrive at its first row
and the given binary number is “used up”.

The machine M1 can indeed be run backwards, as
its transition function w is a bijection from I × S to
O × S. This corresponds to reversing the arrows in the
diagram (1). But instead of one two-state machine we
now need two, depending on the internal state we have
to start in. We get

M20 = (O, I, S, 0, w−1)

and
M21 = (O, I, S, 1, w−1),

which in diagrammatic form become

0

0

��

2→1

33
1→2

0→0

:: 1
2→2

1→0

dd

0→1
ss

and

0
2→1

33
1→2

0→0

:: 1

1

__

2→2

1→0

dd

0→1
ss

.

The given binary number tells us which machine we have
to run: on the two last rows we would use M21 and then
we use M20 on the next row.

Other bases

It is easy to extend this procedure and construct finite
state machines which convert numbers from any given
(integer) base to any other base. Of course when one
base divides the other (as in the case of hexadecimal-to-
binary conversion, for instance) an immediate conversion
is possible, but otherwise some kind of division needs to
be done.

Suppose we want to convert from base p to base q

with p > q. Then the machine M1 can be extended to a
q-state machine M3 with p inputs and outputs, the digits
0, . . . , p−1, and q internal states 0, . . . , q−1. Given input
i ∈ {0, . . . , p−1} and internal state s ∈ {0, . . . , q−1}, the
transition function w gives back as the output the quo-
tient of sp + i by q and changes the internal state to the
remainder of this division.

Ternary computers

Nowadays computers are generally binary. There seems,
however, to be evidence [1] that ternary computers
would be more efficient, while still not being too differ-
ent in their basic set-up. In fact, from an information the-
ory point of view, the most efficient base is e. But since
for many reasons integer bases (digital computers) are
preferable, the optimal choice is 3, which is closer to
e ≈ 2.718 than 2. If ever ternary computers become a
real option, then conversion between ternary and binary
base will be essential in making communication between
the two architectures possible.

References

[1] B. Hayes, Third base, American Scientist 89 (2001),
no. 6, 490.

N. Martins-Ferreira, IPleiria
T. Van der Linden, UCLouvain

Scripta-Ingenia, Winter Solstice, December 21, 2013. (ISSN: 2183-6000)
m http://cdrsp.ipleiria.pt T (351) 244-569441 B scripta.ingenia@ipleiria.pt Page 22


