2,415 research outputs found
Effect of hyperon bulk viscosity on neutron-star r-modes
Neutron stars are expected to contain a significant number of hyperons in
addition to protons and neutrons in the highest density portions of their
cores. Following the work of Jones, we calculate the coefficient of bulk
viscosity due to nonleptonic weak interactions involving hyperons in
neutron-star cores, including new relativistic and superfluid effects. We
evaluate the influence of this new bulk viscosity on the gravitational
radiation driven instability in the r-modes. We find that the instability is
completely suppressed in stars with cores cooler than a few times 10^9 K, but
that stars rotating more rapidly than 10-30% of maximum are unstable for
temperatures around 10^10 K. Since neutron-star cores are expected to cool to a
few times 10^9 K within seconds (much shorter than the r-mode instability
growth time) due to direct Urca processes, we conclude that the gravitational
radiation instability will be suppressed in young neutron stars before it can
significantly change the angular momentum of the star.Comment: final PRD version, minor typos etc correcte
Boundary Conditions for the Einstein Evolution System
New boundary conditions are constructed and tested numerically for a general
first-order form of the Einstein evolution system. These conditions prevent
constraint violations from entering the computational domain through timelike
boundaries, allow the simulation of isolated systems by preventing physical
gravitational waves from entering the computational domain, and are designed to
be compatible with the fixed-gauge evolutions used here. These new boundary
conditions are shown to be effective in limiting the growth of constraints in
3D non-linear numerical evolutions of dynamical black-hole spacetimes.Comment: 21 pages, 12 figures, submitted to PR
R-mode Instability of Slowly Rotating Non-isentropic Relativistic Stars
We investigate properties of -mode instability in slowly rotating
relativistic polytropes. Inside the star slow rotation and low frequency
formalism that was mainly developed by Kojima is employed to study axial
oscillations restored by Coriolis force. At the stellar surface, in order to
take account of gravitational radiation reaction effect, we use a near-zone
boundary condition instead of the usually imposed boundary condition for
asymptotically flat spacetime. Due to the boundary condition, complex
frequencies whose imaginary part represents secular instability are obtained
for discrete -mode oscillations in some polytropic models. It is found that
such discrete -mode solutions can be obtained only for some restricted
polytropic models. Basic properties of the solutions are similar to those
obtained by imposing the boundary condition for asymptotically flat spacetime.
Our results suggest that existence of a continuous part of spectrum cannot be
avoided even when its frequency becomes complex due to the emission of
gravitational radiation.Comment: 10 pages, 4 figures, accepted for publlication in PR
The rotational modes of relativistic stars: Numerical results
We study the inertial modes of slowly rotating, fully relativistic compact
stars. The equations that govern perturbations of both barotropic and
non-barotropic models are discussed, but we present numerical results only for
the barotropic case. For barotropic stars all inertial modes are a hybrid
mixture of axial and polar perturbations. We use a spectral method to solve for
such modes of various polytropic models. Our main attention is on modes that
can be driven unstable by the emission of gravitational waves. Hence, we
calculate the gravitational-wave growth timescale for these unstable modes and
compare the results to previous estimates obtained in Newtonian gravity (i.e.
using post-Newtonian radiation formulas). We find that the inertial modes are
slightly stabilized by relativistic effects, but that previous conclusions
concerning eg. the unstable r-modes remain essentially unaltered when the
problem is studied in full general relativity.Comment: RevTeX, 29 pages, 31 eps figure
Nonradial oscillations of quark stars
Recently, it has been reported that a candidate for a quark star may have
been observed. In this article, we pay attention to quark stars with radiation
radii in the reported range. We calculate nonradial oscillations of -, -
and -modes. Then, we find that the dependence of the -mode
quasi-normal frequency on the bag constant and stellar radiation radius is very
strong and different from that of the lowest -mode quasi-normal
frequency. Furthermore we deduce a new empirical formula between the -mode
frequency of gravitational waves and the parameter of the equation of state for
quark stars. The observation of gravitational waves both of the -mode and of
the lowest -mode would provide a powerful probe for the equation of
state of quark matter and the properties of quark stars.Comment: 13 pages, 6 figures, accepted for publication in Phys.Rev.
Testing outer boundary treatments for the Einstein equations
Various methods of treating outer boundaries in numerical relativity are
compared using a simple test problem: a Schwarzschild black hole with an
outgoing gravitational wave perturbation. Numerical solutions computed using
different boundary treatments are compared to a `reference' numerical solution
obtained by placing the outer boundary at a very large radius. For each
boundary treatment, the full solutions including constraint violations and
extracted gravitational waves are compared to those of the reference solution,
thereby assessing the reflections caused by the artificial boundary. These
tests use a first-order generalized harmonic formulation of the Einstein
equations. Constraint-preserving boundary conditions for this system are
reviewed, and an improved boundary condition on the gauge degrees of freedom is
presented. Alternate boundary conditions evaluated here include freezing the
incoming characteristic fields, Sommerfeld boundary conditions, and the
constraint-preserving boundary conditions of Kreiss and Winicour. Rather
different approaches to boundary treatments, such as sponge layers and spatial
compactification, are also tested. Overall the best treatment found here
combines boundary conditions that preserve the constraints, freeze the
Newman-Penrose scalar Psi_0, and control gauge reflections.Comment: Modified to agree with version accepted for publication in Class.
Quantum Gra
Improved outer boundary conditions for Einstein's field equations
In a recent article, we constructed a hierarchy B_L of outer boundary
conditions for Einstein's field equations with the property that, for a
spherical outer boundary, it is perfectly absorbing for linearized
gravitational radiation up to a given angular momentum number L. In this
article, we generalize B_2 so that it can be applied to fairly general
foliations of spacetime by space-like hypersurfaces and general outer boundary
shapes and further, we improve B_2 in two steps: (i) we give a local boundary
condition C_2 which is perfectly absorbing including first order contributions
in 2M/R of curvature corrections for quadrupolar waves (where M is the mass of
the spacetime and R is a typical radius of the outer boundary) and which
significantly reduces spurious reflections due to backscatter, and (ii) we give
a non-local boundary condition D_2 which is exact when first order corrections
in 2M/R for both curvature and backscatter are considered, for quadrupolar
radiation.Comment: accepted Class. Quant. Grav. numerical relativity special issue; 17
pages and 1 figur
The struggle for co-existence : communication policy by private technical standards making and its limits in unlicensed spectrum
Huge increase in the demand by the wireless sector to use the airwaves has trained focus on the classic policy problem of resource scarcity in the field. This article illuminates a
part of wireless communication – unlicensed spectrum – where a particularly fractious debate over the future usage of such space has developed between incumbent Wi-Fi interests and new entrants from the field of licensed mobile communication. The case
is novel in that private technical standards making has become a site aimed at resolving what is a contest for co-existence in unlicensed spectrum. In its conceptualisation of
private technical standards making processes as communication policy activity, the article illuminates both their affordances and limitations. It also shows the enduring utility of public regulatory steer in what are, in effect, private self-regulatory processes
aimed at creating solutions to problems with a complex socio-technical character
Stellar Pulsations excited by a scattered mass
We compute the energy spectra of the gravitational signals emitted when a
mass m is scattered by the gravitational field of a star of mass M >> m. We
show that, unlike black holes in similar processes, the quasi-normal modes of
the star are excited, and that the amount of energy emitted in these modes
depends on how close the exciting mass can get to the star.Comment: 23 pages, 6 figures, RevTe
Exotic bulk viscosity and its influence on neutron star r-modes
We investigate the effect of exotic matter in particular, hyperon matter on
neutron star properties such as equation of state (EoS), mass-radius
relationship and bulk viscosity. Here we construct equations of state within
the framework of a relativistic field theoretical model. As hyperons are
produced abundantly in dense matter, hyperon-hyperon interaction becomes
important and is included in this model. Hyperon-hyperon interaction gives rise
to a softer EoS which results in a smaller maximum mass neutron star compared
with the case without the interaction. Next we compute the coefficient of bulk
viscosity and the corresponding damping time scale due to the non-leptonic weak
process including hyperons. Further, we investigate the role of the
bulk viscosity on gravitational radiation driven r-mode instability in a
neutron star of given mass and temperature and find that the instability is
effectively suppressed.Comment: 5 pages, 3 figure, presented in the Conference on Isolated Neutron
Stars: From the Interior to The Surface, London, UK, 24-28 April, 2006;
revised and final version to appear in Astrophys. Space Sc
- …