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New boundary conditions are constructed and tested numerically for a general first-order form of the
Einstein evolution system. These conditions prevent constraint violations from entering the computational
domain through timelike boundaries, allow the simulation of isolated systems by preventing physical
gravitational waves from entering the computational domain, and are designed to be compatible with the
fixed-gauge evolutions used here. These new boundary conditions are shown to be effective in limiting the
growth of constraints in 3D nonlinear numerical evolutions of dynamical black-hole spacetimes.
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I. INTRODUCTION

The Einstein system can be written as a set of evolution
equations that determine how the dynamical fields change
with time, plus constraint equations that must be satisfied
by the physically relevant field configurations. The evolu-
tion equations ensure that the constraints will be satisfied
within the domain of dependence of the initial data if they
are satisfied initially. But this does not guarantee that
constraints that are initially small (rather than precisely
zero) will remain small, or that constraint violations will
not enter a domain through its timelike boundaries. Indeed,
the rapid growth of constraint violations from small (trun-
cation or even roundoff-level) values in the initial data
continues to be one of the major problems for the numeri-
cal relativity community.

Constraint violations in the continuum evolution equa-
tions (as distinct from their discrete numerical approxima-
tions) have at least two different causes: (i) bulk constraint
violations, in which existing violations are amplified by the
evolution equations, and (ii) boundary violations, in which
constraint violations flow into the domain through timelike
boundaries. A variety of techniques have been introduced
to control bulk constraint violations in numerical solutions
of constrained evolution systems; these include constraint
projection [1–3] (where the constraint equations are re-
solved whenever the constraints become too large), fully
constrained evolution [4–11] (where some dynamical
fields are determined at each time step by solving the
constraint equations rather than their evolution equations),
and dynamical constraint control [12–14] (in which the
evolution equations are modified dynamically in a way that
minimizes the growth of the constraints). Techniques have
also been proposed to control boundary constraint viola-
tions; these include the construction of special forms of the
evolution equations that prevent constraint violations from
flowing into the domain [15,16], and special boundary
conditions that prevent the influx of constraint violations
in more general forms of the evolution equations [3,14,17–
27].
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Recent studies have shown that bulk constraint viola-
tions are not effectively controlled by constraint projection
[3] or dynamical constraint control [14] techniques, unless
the influx of boundary constraint violations is also con-
trolled separately. Thus the explicit control of boundary
constraint violations appears to be an essential requirement
for effective constraint control in the Einstein system. The
primary purpose of this paper is to construct and then test
numerically the special boundary conditions needed to
prevent the influx of constraint violations in one (rather
general) first-order form of the Einstein evolution system:
the multiparameter generalization of the Frittelli-Reula
system [28] introduced by Kidder, Scheel, and Teukolsky
(KST) [29]. These constraint-preserving boundary condi-
tions are constructed here using the strategy first outlined
by Stewart [17] for the Einstein equations. The idea is to
decompose the constraint fields into incoming and out-
going parts, based on the characteristic decomposition of
the constraint evolution equations. The incoming con-
straint fields are controlled (e.g. set to zero) at each bound-
ary point, and these conditions then serve as boundary
conditions for the principal dynamical fields of the system.
The constraint-preserving boundary conditions derived
here generalize earlier work by being applicable to generic
nonlinear field configurations [19,22], having no symmetry
requirements [18], and allowing arbitrary values of the
gauge fields (i.e., the lapse and shift) [15,21]. These new
boundary conditions are also tested here under more chal-
lenging conditions—nonlinear 3D evolutions of dynami-
cal black-hole spacetimes—than previously considered.

A secondary purpose of this paper is to introduce and
test boundary conditions for the physical (gravitational-
wave) degrees of freedom of the Einstein system. These
new physical boundary conditions control the influx of the
radiative part of the Weyl tensor, and generalize (to the
generic 3D case) the boundary conditions of this type
proposed by Bardeen and Buchman [18]. Boundary con-
ditions are also introduced and tested here for those dy-
namical fields that are not fixed by the physical or the
-1  2005 The American Physical Society
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constraint-preserving boundary conditions. The boundary
conditions for these extra ‘‘gauge’’ degrees of freedom are
set in a way that is consistent with the ‘‘fixed-gauge’’ (i.e.,
time independent lapse density and shift) evolutions used
in the numerical tests described here.

The remainder of this paper is organized as follows. The
basic KST form of the Einstein evolution system is re-
viewed in Sec. II, and additional technical details (which
considerably generalize previously published work) on the
characteristic decomposition of the dynamical fields of this
system are given in Appendix A. The constraint evolution
equations associated with the KST system are described in
Sec. III, and additional details on the hyperbolicity of the
constraint system are given in Appendix B. The principal
new analytical results of this paper are contained in Sec. IV,
where constraint-preserving boundary conditions are de-
rived for the KST system. Two types of constraint-
preserving boundary conditions are presented here: the
first, in Sec. IVA, are based on the characteristic constraint
decomposition ideas of Stewart [17], while the second, in
Sec. IV B, are generalizations of a simpler (but less gen-
erally applicable) type of constraint-preserving boundary
condition which has been used effectively for the scalar-
wave system [3]. Physical boundary conditions that control
the influx of the radiative part of the Weyl tensor are
presented in Sec. V. Boundary conditions for the remaining
gauge dynamical fields are given in Sec. VI. We test the
efficacy of these new boundary conditions by performing
numerical evolutions of various perturbed and unperturbed
black-hole spacetimes. The basic numerical methods used
in these tests are described in Sec. VII. The tests them-
selves are described in Sec. VIII: tests performed on un-
perturbed black holes are given in Sec. VIII A, tests on
perturbed black holes are presented in Sec. VIII B, and
finally a mild ‘‘angular’’ numerical instability that appears
in some of these tests is discussed in Sec. VIII C. The major
results of this paper are summarized and outstanding ques-
tions raised by this work are discussed in Sec. IX.

II. PRINCIPAL EVOLUTION SYSTEM

The form of the Einstein evolution system used here is a
first-order formulation introduced by Kidder, Scheel, and
Teukolsky [29], which generalizes several earlier forms of
the Einstein system [28,30,31]. This system consists of
first-order evolution equations for the spatial metric gij,
the extrinsic curvatureKij, and the spatial derivatives of the
metric Dkij � @kgij=2. The principal (or highest deriva-
tive) parts of these evolution equations are given by

@tgij ’ Nn@ngij; (1)

@tKij ’ Nn@nKij � N��1� 2
0�g
cd�n

�i�
b
j�

� �1� 
2�gnd�b�i�
c
j� � �1� 
2�gbc�n�i�

d
j�

� gnb�ci�
d
j � 2
1gn�bgd�cgij�@nDbcd; (2)
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@tDkij ’ Nn@nDkij � N
�
�nk�

b
i�

c
j �

1

2

3gnbgk�i�

c
j�

�
1

2

4g

nbgij�
c
k �

1

2

3g

bcgk�i�
n
j�

�
1

2

4gbcgij�nk

�
@nKbc; (3)

where ’ indicates that terms algebraic in the fields are not
shown explicitly. This form of the equations assumes that
the lapse density,

Q � log�Ng�
0�; (4)

and the shift Ni are specified a priori as functions of the
coordinates rather than being evolved as independent dy-
namical fields. The parameter1 
0 that appears in these
equations is part of the definition of the lapse density,
Eq. (4), while the parameters 
1, 
2, 
3, and 
4 were
introduced by adding multiples of the constraints to the
standard Arnowitt-Deser-Misner (ADM) form of the evo-
lution equations (see KST [29]). This form of the Einstein
equations is a quasilinear first-order system that can be
written more abstractly as

@tu� � Ak��@ku
� � F�; (5)

where u� � fgij; Kij; Dkijg is the 30 dimensional vector of
dynamical fields, and the quantities Ak�� and F� depend
on u� but not its derivatives @ku�. In this paper the Greek
indices � and � are used to label elements of this space of
dynamical fields.

Boundary conditions for hyperbolic evolution systems
like Eq. (5) are imposed on the incoming characteristic
fields of the system at each boundary point. These charac-
teristic fields are defined as follows. Given a direction field
nk (e.g. the outward directed unit vector normal to the
boundary) we define the left eigenvectors e�̂� of the char-
acteristic matrix nkAk�� by

e�̂�nkA
k�

� � v��̂�e
�̂
�; (6)

where v��̂� is the eigenvalue (also called the characteristic
speed). Greek indices with hats, like �̂, label the various
eigenvectors and corresponding eigenvalues of the system.
There is no summation over �̂ in Eq. (6). These eigenvec-
tors form a complete set in any strongly hyperbolic system
of equations, so the matrix e�̂� is invertible in this case.
The projections of the dynamical fields u� onto these
characteristic eigenvectors are called the characteristic
fields u�̂ of the system:

u�̂ � e�̂�u
�: (7)

Boundary conditions must be imposed on any character-
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istic field having a negative characteristic speed v��̂� < 0
(i.e., an incoming field) at a particular boundary point.

The characteristic fields of the KST system are the
collection of fields u�̂ � fgij; Z

1; Z2
i ; Z

3
i ; Z

4
i ; Z

5
ij; Z

6
kij;

U1�; U2�
i ; U3�; U4�

ij g. The definitions and explicit expres-
sions for these fields are given in Appendix A. The char-
acteristic fields U1�, U2�

i , and U3� have characteristic
speeds �v1, �v2, and �v3 respectively relative to the
hypersurface orthogonal observers, where

v2
1 � 2
0; (8)

v22 �
1

8

3�1� 3
2 � 4
0� �

1

4

4�1� 6
0�; (9)

v2
3 �

1

2
�1� 2
1��2� 
3 � 2
4� �

1

2

2
3: (10)

The characteristic fields U4�
ij have speeds �1, and

fgij; Z
1; Z2

i ; Z
3
i ; Z

4
i ; Z

5
ij; Z

6
kijg have characteristic speed

zero relative to the hypersurface orthogonal observers.
The KST evolution system is strongly hyperbolic if and

only if the characteristic fields are linearly independent.
This is the case if v1 � 0, v2 � 0, v3 � 0, and v1 � v3.
The system is also strongly hyperbolic for v1 � v3 � 0
and 1� 3v21 � 4v22. In the strongly hyperbolic case the
fundamental characteristic fields have 30 independent
components: the spatial metric gij (with six independent
components), five scalars fZ1; U1�; U3�g, five transverse
(to nk) vectors fZ2

i ; Z
3
i ; Z

4
i ; U

2�
i g (which have a total of ten

independent components), three transverse-traceless
second-rank tensors fZ5

ij; U
4�
ij g (which have a total of seven

independent components, since U4�
ij is symmetric while

Z5
ij is not), and one transverse-traceless third-rank tensor

Z6
kij (which has a total of two independent components).

The KST system also admits a positive-definite symmetr-
izer matrix S�� (and so is symmetric hyperbolic) under
fairly weak conditions on the KST parameters, which are
discussed in detail in Appendix B of Ref. [32].

The characteristic speeds relative to the coordinate
frame, i.e., the eigenvalues v��̂� of Eq. (6), are �Nv1 �
nkNk, �Nv2 � nkNk, �Nv3 � nkNk, and �N � nkNk for
the fields U1�, U2�

i , U3�, and U4�
ij respectively. And the

speeds are �nkN
k for the ‘‘zero-speed’’ fields

fgij; Z
1; Z2

i ; Z
3
i ; Z

4
i ; Z

5
ij; Z

6
kijg. Boundary conditions must

be supplied for each incoming characteristic field, i.e.,
for each field whose coordinate characteristic speed is
negative at a particular boundary point. The fields U1�,
U2�
i , U3�, and U4�

ij will be ingoing at most timelike
boundaries; the zero-speed fields fgij; Z

1; Z2
i ; Z

3
i ;

Z4
i ; Z

5
ij; Z

6
kijg will be ingoing at any boundary where the

shift Ni is directed out of the computational domain, i.e.,
whenever nkNk > 0. Boundary conditions must be formu-
lated therefore for each of the fields fgij; Z1; Z2

i ;
Z3
i ; Z

4
i ; Z

5
ij; Z

6
kij; U

1�; U2�
i ; U3�; U4�

ij g.
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III. CONSTRAINT EVOLUTION SYSTEM

Boundary conditions capable of preventing the influx of
constraint violations cannot be formulated without a com-
plete understanding of how the constraints propagate. The
constraints associated with the (vacuum) Einstein evolu-
tion system are

C �
1

2
��3�R� KijKij � K2�; (11)

C i � rjKj
i �riK; (12)

C kij � @kgij � 2Dkij; (13)

C klij � 2@
�kDl�ij: (14)

Here C is the Hamiltonian constraint, Ci is the momentum
constraint, while Ckij and Cklij are auxiliary constraints
associated with the introduction of the dynamical fieldDkij

needed to make the KST system first order. All of these
constraint fields are zero for the physical solutions of the
(vacuum) Einstein evolution system. Note that Ckij and
Cklij are not completely independent: there is a second-
class constraint Cklij � @

�lCk�ij. However, Ckij and Cklij

must both be retained and treated as independent in order
to write the evolution of the constraints as a closed first-
order hyperbolic system, which is the goal of this section.

The evolution of the constraints is completely deter-
mined by the evolution of the dynamical fields of the
principal evolution system. Using the KST evolution equa-
tions, Eqs. (1)–(3), and the definitions of the constraints,
Eqs. (11)–(14), it is straightforward to show that the prin-
cipal parts of the constraint evolution equations are

@tC ’ Nk@kC�
1

2
�2� 
3 � 2
4�Ngij@iCj; (15)

@tCi ’ Nk@kCi � �1� 2
1�N@iC

�
1

2
Ngklgab��1� 
2�@kClabi � �1� 
2�@kCailb

� �1� 2
0�@kCliab�; (16)

@tCkij ’ Nk@kCkij; (17)

@tCklij ’ Nm@mCklij �
1

2

3N�gj�l@k�Ci � gi�l@k�Cj�

� 
4Ngij@�kCl�: (18)

More abstractly, the constraints satisfy a quasilinear evo-
lution system of the form

@tcA � AkAB@kc
B � FABc

B; (19)

where cA � fC;Ci;Ckij;Cklijg are the constraints defined
in Eqs. (11)–(14), AkAB depends on the dynamical fields
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u�, and FAB depends on u� and @ku�. We use upper case
Latin indices such as A and B to label the constraint fields.
If the constraint evolution system is hyperbolic, then
Eq. (19) guarantees that the constraints will vanish every-
where if they are zero at some initial time, and if boundary
conditions are chosen to prevent the influx of constraints
through timelike boundaries.

In order to determine whether this constraint evolution
system is hyperbolic, we evaluate the characteristic fields
associated with Eq. (19). It is straightforward to show that
the fields cÂ � fCkij; Z

7; Z8
i ; Z

9
i ; Z

10
ij ; Z

12
ijkl; U

5�
i ; U6�g are

characteristic constraint fields, where the individual com-
ponents of cÂ are defined by

Z7 � 
3C� �2� 
3 � 2
4�n
knlC2

kl; (20)

Z8
i � nkPli�
4C

1
kl � �
3 � 3
4�n

anbCklab�; (21)

Z9
i � nkPli�3C

1
kl � 2C2

kl � 7nanbCklab�; (22)

Z10
ij � PkiP

l
jC

1
kl; (23)

Z11
ij �

�
PkiP

l
j �

1

2
PijP

kl
�
C2
kl; (24)

Z12
ijkl � Cijkl �

3

5
C1
ijgkl �

2

5
�C1

k�igj�l � C1
l �igj�k�

�
4

5
C2

�ij�gkl �
4

15
�C2

k�igj�l � C2
l �igj�k�

�
14

15
�gk�iC

2
j�l � gl�iC

2
j�k�; (25)

U5�
i � �nkPli��1� 2
0�C

1
kl � 2C2

�kl� � 2
2C
2
�kl��

� 2v2P
l
iCl; (26)

U6� � �1� 2
1�C� v3nkCk � 
2nknlC2
kl: (27)

The tensor Pli that appears in Eqs. (20)–(27) is the pro-
jection tensor Pli � �li � nlni, v2 and v3 are given by
Eqs. (9) and (10), and C1

ij and C2
ij are defined by

C 1
ij � gklCijkl; (28)

C 2
ij � gklCkijl: (29)

The characteristic constraint fields U5�
i and U6� have

characteristic speeds �v2 and �v3 respectively, while the
characteristic constraint fields fCkij; Z7; Z8

i ; Z
9
i ; Z

10
ij ;

Z11
ij ; Z

12
ijklg have characteristic speed zero relative to the

hypersurface orthogonal observers. The characteristic con-
straint fields have 40 independent components: Ckij (which
has 18 independent components), three scalars fZ7; U6�g,
four transverse (to nk) vectors fZ8

i ; Z
9
i ; U

5�
i g (which have a
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total of eight independent components), one antisymmetric
transverse second-rank tensor Z10

ij (which has one indepen-
dent component), one transverse-traceless second-rank
tensor Z11

ij (which has three independent components),
and one totally trace-free fourth-rank tensor Z12

ijkl (which
is antisymmetric in its first two indices, symmetric in its
last two indices, and so has seven independent compo-
nents). These characteristic constraint fields are linearly
independent so long as v2 � 0 and v3 � 0. Thus the
characteristic constraint evolution equations are strongly
hyperbolic whenever the principal evolution system is
strongly hyperbolic. In Appendix B we summarize the
conditions under which the constraint evolution system is
also symmetric hyperbolic.

IV. CONSTRAINT-PRESERVING
BOUNDARY CONDITIONS

The constraint characteristic fields U5�
i and U6� are

incoming fields at most timelike boundaries, and the fields
fCkij; Z7; Z8

i ; Z
9
i ; Z

10
ij ; Z

11
ij ; Z

12
ijklg are incoming at any bound-

ary where nkNk > 0. Therefore we must choose boundary
conditions on the incoming characteristic fields of the
principal evolution system, u�̂, in a way that controls these
incoming constraint characteristic fields, cÂ. We use two
different approaches to accomplish this for the KST sys-
tem. The first approach (introduced by Stewart [17] and
developed by Calabrese et al. [22]) reexpresses the incom-
ing characteristic constraint fields, cÂ, in terms of the
principal characteristic fields, u�̂. This results in a set of
Neumann-like boundary conditions on certain incoming
characteristic fields u�̂. These type I boundary conditions
are discussed in more detail in Sec. IVA. The second (less
general) approach (introduced by Holst et al. [3]) uses a
more direct Dirichlet-like boundary condition for certain
incoming characteristic fields u�̂. These type II boundary
conditions are discussed in more detail in Sec. IV B.

We note that it is not possible to use these methods to
derive a boundary condition for all of the characteristic
fields (of the principal system) that need them. In particular
it is not possible to obtain boundary conditions for the
fields Z4

i , U
1�, and U4�

ij in this way. The boundary con-
ditions for these fields are determined by physical and
gauge considerations, which are discussed in detail in
Secs. V and VI.

A. Type I boundary conditions

The incoming constraint characteristic fields Ckij, Z7,
Z8
i , Z

9
i , Z

11
ij , Z12

ijkl, U
5�
i , and U6� all depend on normal (i.e.,

perpendicular to the boundary) derivatives of the principal
characteristic fields u�̂. A straightforward but lengthy cal-
culation shows that these characteristic constraint fields
can be expressed as follows:

nkCkij � d?gij � 2nkDkij; (30)
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Z7 � �d?Z
1 � �2� 
3 � 2
4�P

abncnd@aDcdb

�
1

2

3�8D�ab�

bDc
ac �Dab

bDac
c � KabK

ab � K2�

� 2
3P
abgcd@aD�bc�d �

1

2

3Dabc�3D

abc � 2Dcab�;

(31)

Z8
i � d?Z2

i � �
4gab � �
3 � 3
4�nanb�ncPdi@dDcab;

(32)

Z9
i � d?Z

3
i � ��3gab � 7nanb�Pdi � 2PaiP

bd�nc@dDcab;

(33)

Z11
ij � d?Z

5
ij

�

�
PaiP

b
j �

1

2
PijP

ab
�
�gcd@aDcbd � Pcd@cDabd�;

(34)

ndPcabkij Z
12
dcab � d?Z

6
kij � ncPdabkij @dDcab; (35)

U5�
i � �d?U

2�
i � 2v2�P

jkPli � gjlPki�@kKjl

� 2v2�g
ajgbkPci � gcjgabPki

� 2gcagbjPki�DcabKjk � ��1� 
2�n
mgln

� �1� 2
0�n
lgmn�Pki@kDlmn � ��1� 
2�n

lPmi

� �1� 
2�n
mPli�P

kn@kDlmn; (36)

U6� � d?U3� � v3nlPjk@kKjl � 
2Pknnlnm@kDlmn

� �1� 2
1��2g
m�lPn�k@kDlmn � gi�jga�bKijKab�

� v3�g
ajgbknc � gcjgabnk � 2gcagbjnk�DcabKjk

�
1

2
�1� 2
1��gkcgijgab � 2gkagibgjc

� 8gk�iga�jgcb � 3gkcgiagjb�DkijDcab; (37)

where Pcabkij is defined by Eq. (A15), and the quantities
d?gij, d?Z1, d?Z2

i , d?Z
3
i , d?Z

5
ij, d?Z

6
kij, d?U

2�
i , and

d?U
3� are components of d?u�̂, the characteristic projec-

tions of the normal derivatives of the dynamical fields.
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These projected normal derivatives are defined by

d?u
�̂ � e�̂�n

k@ku
�: (38)

We note that Eqs. (30)–(37) express these incoming char-
acteristic constraint fields, cÂ, in terms of the normal
derivative of one of the principal characteristic fields, u�̂,
plus terms that depend on derivatives tangent to the bound-
ary and terms that are algebraic in the fields.

The simplest type I constraint-preserving boundary con-
ditions are obtained by setting the incoming components of
the characteristic constraint fields to zero. Using Eqs. (30)–
(37), these expressions become boundary conditions for
the normal derivatives of the incoming dynamical fields
d?gij, d?Z1, d?Z2

i , d?Z
3
i , d?Z

5
ij, d?Z

6
kij, d?U

2�
i , and

d?U
3�:

d?gij � 2nkDkij; (39)

d?Z
1 ���2�
3 � 2
4�P

abncnd@aDcdb

�
1

2

3�8D�ab�

bDc
ac�Dab

bDac
c�KabKab�K2�

� 2
3Pabgcd@aD�bc�d

�
1

2

3Dabc�3D

abc� 2Dcab�; (40)

d?Z
2
i � �
4g

ab � �
3 � 3
4�n
anb�ncPdi@dDcab; (41)

d?Z
3
i � ��3gab � 7nanb�Pdi � 2PaiP

bd�nc@dDcab; (42)

d?Z
5
ij �

�
PaiP

b
j �

1

2
PijPab

�
�gcd@aDcbd � Pcd@cDabd�;

(43)

d?Z
6
kij � ncPdabkij @dDcab; (44)

d?U2�
i � 2v2�PjkPli � gjlPki�@kKjl � 2v2�gajgbkPci

� gcjgabPki � 2gcagbjPki�DcabKjk

� ��1� 
2�n
mgln � �1� 2
0�n

lgmn�Pki@kDlmn

� ��1� 
2�n
lPmi � �1� 
2�n

mPli�P
kn@kDlmn;

(45)
m�l n�k i�j a�b
d?U3� � v3nlPjk@kKjl � 
2Pknnlnm@kDlmn � �1� 2
1��2g P @kDlmn � g g KijKab�

� v3�g
ajgbknc � gcjgabnk � 2gcagbjnk�DcabKjk

�
1

2
�1� 2
1��gkcgijgab � 2gkagibgjc � 8gk�iga�jgcb � 3gkcgiagjb�DkijDcab: (46)

More general type I boundary conditions of this type can also be obtained by setting the incoming constraint characteristic
fields to multiples of the corresponding outgoing fields: i.e., by settingU5�

i � *5U5�
i andU6� � *6U6�. These boundary

conditions can therefore be generalized by adding the terms *5U
5�
i and �*6U6� to the right sides of Eqs. (45) and (46)

respectively.
-5
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We point out that the combination of constraints,

Z9
i � 15PaiN

bncndZ12
abcd � 16Pa�cPd�in

b@dDcab; (47)

involves no normal derivatives of Dcab. Thus, arbitrary
multiples of this combination of constraints could be added
to the type I boundary conditions for Z2

i , Z
3
i and U2�

i in
Eqs. (41), (42), and (45) without changing the basic struc-
ture of these conditions at all. We find that the addition of
these terms does change the stability of numerical evolu-
tions. But at present we have not found a systematic way to
optimize the addition of these extra constraint fields (short
of brute force numerical testing), so the numerical evolu-
tions presented here use the simplest analytical forms given
in Eqs. (41), (42), and (45).

We find it convenient to impose these type I constraint-
preserving boundary conditions via the Bjørhus method
[33] (which we commonly use in our numerical code) in
the following way. The characteristic projection of the
principal evolution system can be written as

dtu
�̂ � v��̂�d?u

�̂ � e�̂���A
k�

�P
i
k@iu

� � F��; (48)

where dtu�̂ represents the characteristic projection of the
time derivative of the dynamical field:

dtu
�̂ � e�̂�@tu

�: (49)

The terms on the right side of Eq. (48) depend on the
boundary values of the dynamical fields and the derivatives
of these fields tangent to the boundary surface. We leave
these terms unchanged. However, we replace the term
d?u�̂ on the left side of Eq. (48) by its desired value
d?u�̂bc. For the fields gij, Z1, Z2

i , Z
3
i , Z

5
ij, U

2�
i and U3�,

d?u
�̂
bc is given by Eqs. (39)–(46).

This method of imposing these boundary conditions can
be implemented numerically in a simple and elegant way.
Let us define the quantity

Dtu
�̂ � e�̂���A

k�
�@ku

� � F��; (50)

which is just the characteristic projection of the right side
of the full evolution equation, without any modifications
for boundary conditions. At the boundary, Eq. (48) then
takes the form

dtu�̂ � Dtu�̂ � v��̂��d?u�̂ � d?u�̂bc�: (51)

In this expression, d?u�̂bc represents the desired values of
the tangential derivatives at the boundary, and d?u

�̂ de-
notes the actual values of the tangential derivatives as
defined in Eq. (38). When d?u�̂ is expressed in terms of
the constraints on the boundary using Eqs. (30)–(37), and
when d?u�̂bc is determined from Eqs. (39)–(46), then the
term d?u�̂ � d?u�̂bc simplifies considerably. Thus, in par-
ticular, the boundary conditions for gij, Z1, Z2

i , Z
3
i , Z

5
ij,

Z6
kij, U

2�
i and U3� can be written as

dtgij � Dtgij � nkN
knlClij; (52)
064020
dtZ
1 � DtZ

1 � nkN
kZ7; (53)

dtZ
2
i � DtZ

2
i � nkN

kZ8
i ; (54)

dtZ
3
i � DtZ

3
i � nkNkZ9

i ; (55)

dtZ
5
ij � DtZ

5
ij � nkNkZ11

ij ; (56)

dtZ
6
kij � DtZ

6
kij � nmNmndPcabkij Z

12
dcab; (57)

dtU
2�
i � DtU

2�
i � �Nv2 � nkN

k��U5�
i �*5U

5�
i �;

(58)

dtU
3� � DtU

3� � �Nv3 � nkN
k��U6� �*6U

6��: (59)

The Dtu
�̂ that appear in these expressions are to be eval-

uated using Eq. (50), while the constraint fields Ckij, Z7,
Z8
i , Z

9
i , Z

11
ij , Z12

klij, U
5�
i and U6� are to be evaluated nu-

merically using their definitions in Eqs. (13), (20)–(22),
and (24)–(27) respectively.

B. Type II boundary conditions

A second type of constraint-preserving boundary condi-
tion can be imposed on those characteristic fields that
represent various projections of the field PklDkij. The
influx of constraint violations that could cause PklDkij to
differ from Pkl@kgij=2 can be prevented by enforcing the
equality of these fields on the relevant boundaries. This is a
Dirichlet-like boundary condition that sets PklDkij �

Pkl@kgij=2. This type of constraint-preserving boundary
condition has been used successfully in the scalar-wave
system by Holst et al. [3]. The characteristic fields Z2

i , Z
3
i ,

Z5
ij, and Z6

kij are composed entirely of various components
of PklDkij, which represent the derivatives of gij that are
tangent to the boundary. These type II boundary conditions
can be imposed using the Bjørhus method by setting

dtZ2
i �

1

2
�
4Pab � �
3 � 2
4�nanb�Pci@c@tgab; (60)

dtZ
3
i �

1

2
��3Pab � 4nanb�Pci � 2PaiP

bc�@c@tgab; (61)

dtZ
5
ij �

1

4
�2PciP

a
j � PijPca�nb@c@tgab; (62)

dtZ
6
kij �

1

2
Pcabkij @c@tgab; (63)

at any boundary where these fields are incoming. The
quantity @c@tgab that appears on the right sides of
Eqs. (60)–(63) is to be evaluated by taking the indicated
tangential spatial derivatives of the right side of Eq. (52).
These expressions are obtained using the expressions for
Z2
i , Z

3
i , Z

5
ij, and Z6

kij from Eqs. (A2), (A3), (A5), and (A6),
-6
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and replacing the terms @tDcab by @c@tgab=2. We note that
these fields Z2

i , Z
3
i , Z

5
ij and Z6

kij can also be controlled using
the type I boundary conditions described in Sec. IVA. We
have tested these type II boundary conditions numerically,
and find the results to be essentially identical to the results
described in Sec. VIII for tests with type I boundary
conditions.

V. PHYSICAL BOUNDARY CONDITIONS

In this section we derive boundary conditions for the
physical components of the dynamical fields, U4�

ij , which
represent the real gravitational-wave degrees of freedom of
the system, at least asymptotically. Our strategy is based on
the proposal of Bardeen and Buchman [18], and similar
ideas used by Reula and Sarbach [34] in the context of the
Maxwell system. These ideas are adapted to the general 3D
Einstein system by analyzing the dynamics of the Weyl
tensor as determined by the Bianchi identities. We then
infer boundary conditions on the dynamical fields of the
KST system that control the incoming radiative parts of the
Weyl tensor. We begin by following the usual practice of
decomposing the Weyl tensor into electric and magnetic
parts,

E*, � C*�,.T
�T.; (64)

B*, �
1

2
C*!�.1

�.
,2T

!T2; (65)

where T* represents a timelike unit vector. [In this paper
letters from the latter part of the Greek alphabet (*, ,, etc.)
represent four-dimensional spacetime coordinate indices.]
In our analysis here we assume that T* is orthogonal to the
t � constant spacelike hypersurfaces of the standard 3� 1
decomposition of the geometry. In this case we can express
the electric and magnetic parts of the Weyl tensor in terms
of standard 3� 1 quantities:

Eij � Rij � KKij � Ki
kKkj; (66)

Bij � �rkKli�1
kl
j; (67)

where Rij, Kij, ri and 1ijk represent the three-dimensional
Ricci tensor, the extrinsic curvature, the 3D spatial cova-
riant derivative, and the 3D totally antisymmetric tensor,
respectively. These electric and magnetic parts of the Weyl
tensor are symmetric and traceless in any vacuum
spacetime.

The Weyl tensor satisfies the Bianchi identities,

0 � r
��C.!�*,; (68)

in any vacuum spacetime, where here r* represents the 4D
covariant derivative, and these equations imply a system of
evolution equations for the Weyl tensor. The 3� 1 repre-
sentation of the principal parts of these evolution equations
can be written [35] in the form
064020
@tEij � Nk@kEij ’ �N�@kBl�i�1j�
kl; (69)

@tBij � Nk@kBij ’ N�@kEl�i�1j�
kl; (70)

which is reminiscent of the Maxwell system. The charac-
teristic fields of this vacuum Weyl tensor evolution system
are

Z13 � nanbEab; (71)

Z14 � nanbBab; (72)

U7�
i � Pain

bEab � 1i
abnbn

cBac; (73)

U8�
ij �

�
P�a

iP
b�
j �

1

2
PijP

ab
�
�Eab � 1a

cdndBcb�; (74)

where nk is a spatial unit vector. The characteristic fields
Z13 and Z14 have characteristic speed zero, U7�

i have
speeds �1=2, and U8�

ij have speeds �1 relative to the
hypersurface orthogonal observers. These fields propagate
with coordinate speeds �nkNk, �N=2� nkN

k, and �N �
nkN

k respectively. An equivalent expression for U8�
ij in

terms of the standard 3� 1 variables is

U8�
ij �

�
PaiP

b
j �

1

2
PijPab

�
�Rab � KKab � Ka

cKcb

� ncrcKab � ncr
�aKb�c�: (75)

The vacuum characteristic fields U8�
ij and U8�

ij are propor-
tional to the Newman-Penrose [36] components of the
Weyl tensor �4 and �0, respectively.

The true gravitational-wave degrees of freedom are
represented by the fields U8�

ij . The best (gauge invariant)
way to impose boundary conditions on the physical de-
grees of freedom of the Einstein system is therefore to
require that the incoming part of this field has prescribed
values: U8�

ij � U8�
ij jbc at the boundaries. This condition is

equivalent to fixing the Newman-Penrose component
�0 � �0jbc on the boundary. Since U8�

ij falls to zero as
r�5 in an asymptotically flat spacetime [36], it is reason-
able to set U8�

ij � 0 as an approximate physical no-incom-
ing-wave boundary condition, even for a boundary located
at a finite radius. This boundary condition, U8�

ij � 0,
would produce discontinuities in the incoming waves un-
less U8�

ij were exactly zero in the initial data. Therefore
instead we freeze U8�

ij to its (small) initial value by setting
U8�
ij jbc � U8�

ij �t � 0�. This condition guarantees continu-
ity and therefore produces smoother numerical evolutions.
In the limit of boundaries with larger and larger radius, the
U8�
ij � 0 and the U8�

ij jbc � U8�
ij �t � 0� boundary condi-

tions will be equivalent in an asymptotically flat spacetime.
In order to write the boundary condition on U8�

ij as a
condition on the principal dynamical fields, we first ex-
press U8�

ij in terms of the principal characteristic fields
using Eq. (75):
-7
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U8�
ij � d?U4�

ij � 
2Z11
�ij� �

�
P�a

iP
b�
j �

1

2
PijPab

�
fnc@aKbc � 2
2Pcd@�aDc�bd � 
2ncnd@aDcbd � 2Pcd@cD�da�b

� 2gcd@aD�bc�d � KKab � KacK
c
b � �2Dcd

c �Ddc
c��2Dabd �Ddab� � 4Dcd

aD�dc�b �Da
cdDbcd

� 2ncKd
�aDc�bd � 4ncD�bd��cKa�

dg: (76)

In deriving this expression, we have used the fact that the constraint characteristic field Z11
ij can be expressed in terms of

d?Z
5
ij using Eq. (34). Setting U8�

ij � U8�
ij jbc (and Z11

�ij� � 0) gives us the desired Neumann-like boundary condition for the
principal characteristic field U4�

ij :

d?U4�
ij � U8�

ij jbc �

�
P�a

iP
b�
j �

1

2
PijPab

�
fnc@aKbc � 2
2Pcd@�aDc�bd � 
2ncnd@aDcdb � 2Pcd@cD�da�b

� 2gcd@aD�bc�d � KKab � KacK
c
b � 4Dcd

aD�dc�b � �2Dcd
c �Ddc

c��2Dabd �Ddab� �Da
cdDbcd

� 2ncKd
�aDc�bd � 4ncD�bd��cKa�

dg: (77)
This physical boundary condition can be imposed numeri-
cally with the same technique used for the type I
constraint-preserving boundary conditions discussed in
Sec. IVA. In particular we set

dtU
4�
ij � DtU

4�
ij

� �N � nkN
k��U8�

ij �U8�
ij jbc � 
2Z

11
�ij��: (78)

The term DtU
4�
ij is to be evaluated using Eq. (50), while

Z11
ij and U8�

ij are to be evaluated numerically using
Eqs. (24) and (75) respectively.
VI. GAUGE-FIXING BOUNDARY CONDITIONS

Next we turn our attention to finding boundary condi-
tions for the two fields U1� and Z4

i that were not fixed by
either the constraint-preserving boundary conditions in
Sec. IV or the physical boundary conditions in Sec. V.
Since these fields are not fixed by the constraints or by
physical considerations, they must be gauge fields in effect.
Boundary conditions on U1� and Z4

i should be chosen in a
way that is consistent with the gauge conditions. In the
evolution system used here, we assume that the lapse
density and the shift are frozen to their initial values.
One reasonable boundary condition for these gauge fields
then is simply to freeze them at their initial values on the
boundaries:

dtU1� � 0; (79)

dtZ
4
i � 0: (80)

We have also found that a useful boundary condition for
U1� can be obtained from one of the standard equations
used to fix the lapse: @tK � 0. Expressing @tK in terms of
the time derivatives of the principal characteristic fields,
we find
064020
@tK � gij@tKij � Kij@tgij;

�
3� q
4v3

�dtU
3� � dtU

3��

�
1

4v1
�dtU1� � dtU1�� � Kij@tgij: (81)

[The parameter q that appears in this expression is the ratio
of characteristic speeds defined in Eq. (A14).] Setting
@tK � 0 therefore provides a boundary condition for the
incoming characteristic field U1�:

dtU
1� � �dtU

1� �
v1�3� q�

v3
�dtU

3� � dtU
3��

� 4v1K
ij@tgij: (82)

The quantities dtU3� and @tgij on the right side of Eq. (82)
are evaluated with the appropriate boundary expressions
for these quantities. We find that using Eq. (82) in evolu-
tions of black-hole spacetimes is fairly effective in con-
trolling the growth of perturbations in U1� with low
spherical-harmonic indices. But at the same time using
this boundary condition causes unstable (and nonconver-
gent) growth of perturbations with large spherical-
harmonic indices. We solve this problem numerically by
applying this boundary condition only after applying a
filter that removes all spherical-harmonic components
above ‘ � 2 from Eq. (82) at the boundary. Thus we use
Eq. (82) for the ‘ � 2 spherical-harmonic components of
this equation, and a regular freezing boundary condition,
Eq. (79), for the ‘ > 2 spherical-harmonic components.

Finally, we note that boundary conditions for U1� and
Z4
i can also be obtained from the ‘‘�-freezing’’ condition

that is often used to determine the shift vector [37,38]. We
found that these �-freezing boundary conditions on U1�

and Z4
i are not as effective as Eqs. (80) and (82) in con-

trolling the growth of instabilities in these gauge fields.
And since the equations for the �-freezing forms of these
boundary conditions are quite lengthy, we do not reproduce
them here.
-8
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VII. NUMERICAL METHODS

In this section we describe briefly the numerical meth-
ods used to compute the simulations presented below. All
our numerical computations are performed using a multi-
domain pseudospectral collocation method. Our numerical
methods are essentially the same as those we applied
previously to evolution problems with scalar fields
[3,39], with the Maxwell system [14], and the Einstein
system [29,40–42].

A. Spectral collocation method

The computational domain for the single black-hole
evolutions described in Sec. VIII is a spherical shell ex-
tending from some rmin ( just inside the black-hole event
horizon) to some maximum value rmax. This domain may
also be subdivided into one or more spherical-shell sub-
domains. Consider a single one of these subdomains that
extends from radius r0min to r0max. Given a system of partial
differential equations

@tu��x; t� � F ��u�x; t�; @iu�x; t��; (83)

where u� is a collection of dynamical fields, the solution
u��x; t� on this subdomain is expressed as a time-
dependent linear combination of N spatial basis functions
6k�x�:

u�N�x; t� �
XN�1

k�0

~u�k �t�6k�x�: (84)

We expand each Cartesian component of each tensor in
terms of the basis functions Tn�2�Y‘m�8; ’�, where
Y‘m�8; ’� are spherical harmonics and Tn�2� are
Chebyshev polynomials with

2 �
2r� r0max � r0min

r0max � r0min

: (85)

The spherical coordinates (r, 8, and ’) used in these
spectral expansions are related to the pseudo-Cartesian
coordinates used to evaluate the components of tensor
fields (e.g. gxx, Kyz, Dxyz, . . .) by the usual transformation
x � r sin8 sin’, y � r sin8 cos’, and z � r cos8. In these
spectral expansions we keep Chebyshev polynomials
Tn�2� with n up to some finite Nr, and spherical harmonics
Y‘m�8; ’� with ‘ up to some finite ‘max. For each ‘, we
keep all jmj � ‘. The values of Nr and ‘max determine our
radial and angular resolution, and we vary these in order to
perform convergence tests. Spatial derivatives are eval-
uated analytically using the known derivatives of the basis
functions:

@iu�N�x; t� �
XN�1

k�0

~u�k �t�@i6k�x�: (86)

Associated with the basis functions is a set of Nc collo-
cation points xi. Given spectral coefficients ~u�k �t�, the
064020
function values at the collocation points u��xi; t� are com-
puted using Eq. (84). Conversely, the spectral coefficients
are obtained by the inverse transform

~u �
k �t� �

XNc�1

i�0

wiu�N�xi; t�6k�xi�; (87)

where wi are weights specific to the choice of basis func-
tions and collocation points. Thus it is straightforward to
transform between the spectral coefficients ~u�k �t� and the
function values at the collocation points u�N�xi; t�. The
partial differential equation, Eq. (83), is now rewritten
using Eqs. (84)–(87) as a set of ordinary differential equa-
tions for the function values at the collocation points,

@tu
�
N�xi; t� � G�

i �uN�xj; t��; (88)

where G�
i depends on u�N�xj; t� for all j. We integrate this

system of ordinary differential equations, Eq. (88), in time
using a fourth-order Runge-Kutta algorithm. Boundary
conditions are incorporated into the right side of Eq. (88)
using the technique of Bjørhus [33]. For the evolutions
reported here the time step is typically chosen to be about
1.5 times the distance between the closest collocation
points in order that the Courant-Friedrichs-Lewy stability
limit remains satisfied.

We use no filtering on the radial basis functions, but
apply a rather complicated filtering rule for the angular
functions. When evaluating the right side of Eq. (88), we
set to zero the coefficients of the terms with ‘ � ‘max � 3
in the tensor spherical-harmonic expansions of the
dynamical-field components (i.e. the gij, Kij, and Dkij

components) of this equation. This filtering method elim-
inates a certain type of angular instability that arises be-
cause differentiation mixes the various spherical-harmonic
indices in the spectral expansions of the Cartesian compo-
nents of tensors.

B. Multiple subdomains

Under many circumstances it is advantageous to divide
the computational domain into multiple subdomains. This
subdivision allows faster calculations by spreading the
computational load over multiple processors. It also allows
the use of different spectral resolutions in different parts of
the computational domain, thus making it possible to
concentrate computational resources in areas where they
are most needed. We use the spectral collocation method
described in Sec. VII A for each computational subdomain.
An additional complication with multiple subdomains is
that only some of the subdomain boundaries are external,
while some are just internal boundaries that separate sub-
domains. Appropriate boundary conditions must neverthe-
less be specified on each boundary of each subdomain. For
the computations described here we impose conditions on
each subdomain boundary using the Bjørhus [33] method,
in which dtu�̂ [see Eq. (49)] is specified for each ingoing
-9
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characteristic field (i.e., for each �̂ with v��̂� < 0). Non-
ingoing fields do not need and are not given boundary
conditions. For external boundaries (those without neigh-
boring subdomains) the incoming dtu

�̂ are computed ac-
cording to some externally imposed boundary condition,
for example, our new constraint-preserving or physical
boundary conditions. For internal boundaries, the values
of all incoming dtu�̂ are simply copied from the corre-
sponding outgoing dtu�̂ in the neighboring subdomain. At
a black-hole excision boundary v��̂� > 0 for all �̂, so no
boundary condition is required there on any of the dynami-
cal fields.

For the simulations described here, we subdivide our
computational domain into a set of concentric spherical-
shell subdomains. We choose the constants Nr and ‘max

(that specify the spectral resolution of each subdomain) to
have the same values in all the subdomains; this makes it
easier to achieve load balancing when multiple processors
are used. We concentrate the numerical resolution where it
is needed in our solutions by allowing spherical shells with
varying thickness: for fixed radial resolution Nr, thin shells
achieve higher resolution than thick shells.

C. Residual evaluators

We use three different computational diagnostics to help
us evaluate the accuracy and stability of the numerical
simulations described in Sec. VIII. The first and simplest
diagnostic just measures the difference between a numeri-
cal solution and the exact solution of the equations. This is
possible whenever the exact solution to the problem is
known, as in our evolutions of unperturbed black-hole
spacetimes. We measure the deviation of the numerical
solution from the exact solution quantitatively by evaluat-
ing the energy norm of the difference between the two
solutions:

��E�2 �
Z
S���u� � u�0 ��u

� � u�0 �
���
g

p
d3x: (89)

Here u� denotes the numerical solution, u�0 the exact
solution, and S�� the symmetrizer matrix of the hyperbolic
evolution system. The symmetrizer S�� is a positive-
definite matrix on the space of dynamical fields, which is
derived for the KST evolution system studied here in
Refs. [32,41]. (We evaluate S�� using the exact solution
u�0 .) The energy �E is not dimensionless, and consequently
it is not clear how to interpret whether a given value means
that the solution is a good approximation of the exact
solution or not. Therefore we normalize by dividing by
the total energy of the exact solution:

E2
0 �

Z
S��u

�
0 u

�
0

���
g

p
d3x: (90)

The ratio �E=E0 is therefore a good dimensionless mea-
sure of the accuracy of our numerical solution. When this
064020
ratio becomes of order unity, the numerical solution bears
little resemblance to the exact solution.

A second, more general, method of measuring the accu-
racy and stability of our numerical solutions is to monitor
the magnitudes of the constraints, cA � fC;Ci;Ckij;Cklijg.
When the constraints vanish, the solutions to our first-order
evolution system, Eqs. (1)–(3), are guaranteed to be solu-
tions of the original Einstein equations as well. Thus, to
measure how well our numerical solutions solve the origi-
nal Einstein system we construct the following measure of
the constraints:

kCk2 �
Z
�C2 � CiC

i � CkijC
kij � CklijC

klij�
���
g

p
d3x:

(91)

The constraints consist of various derivatives of the dy-
namical fields u�. Therefore we can construct a meaningful
dimensionless measure of the constraints by normalizing
kCk by dividing by a measure of these derivatives:

k@uk2 �
Z X

�

gij@iu
�@ju

� ���
g

p
d3x: (92)

We evaluate the quantities that appear in Eq. (92) (i.e., the
tensor components of u� and the partial derivatives) in the
global Cartesian-like coordinate system used in our code.
The ratio kCk=k@uk is therefore a dimensionless measure
of the degree to which our numerical solutions satisfy the
original Einstein system. When this quantity becomes of
order unity the constraint violations dominate and our
numerical solutions no longer accurately represent solu-
tions to the original Einstein equations.

At the continuum level, the vanishing of kCk is enough
to ensure that the solutions to our first-order evolution
system also represent solutions to the original second-order
Einstein equations. It is good numerical practice, however,
to construct a redundant independent check of how well the
original system of differential equations is satisfied by our
numerical solutions. So we have constructed a third inde-
pendent residual evaluator for the second-order form of the
Einstein equations. Following the ideas of Choptuik [43],
we use our numerical solution for u� to reconstruct the
four-dimensional metric:

ds2 � g*,dx
*dx,

� �N2dt2 � gij�dx
i � Nidt��dxj � Njdt�: (93)

[Letters from the latter part of the Greek alphabet (*, ,,
etc.) denote four-dimensional spacetime indices in our
Cartesian-like coordinate system.] We evaluate the com-
ponents of g*, on the actual time slices used in our
evolution code, and then evaluate the time derivatives
@tg*, and @2t g*, using standard centered finite-difference
expressions for these quantities with seven-point stencils.
Given these time derivatives on a certain time slice, we
then evaluate the complete set of first and second deriva-
-10



FIG. 1 (color online). Initial data for the perturbed black-hole
evolutions. Shown is the Newman-Penrose component of the
Weyl tensor j�4j, which measures the outgoing gravitational-
wave flux.
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tives, @�g*, and @�@.g*,, by computing the spatial de-
rivatives using the spectral methods described in
Sec. VII A. Finally, we combine these first and second
derivatives to determine the four-dimensional Ricci tensor:

R*, � �
1

2
g�.�@�@.g*, � @*@,g�. � 2@�@�*g,�.�

�
1

4
g�.g!2�@*g�!@,g.2 � 4@�g*!@�.g2�,

� �@!g*, � 2@
�*g,�!��@2g�. � 2@�g.2��:

(94)

The Ricci tensor should vanish for any solution of the
vacuum Einstein equations, so this quantity gives us an
independent way to measure how well our numerical so-
lution solves the original second-order Einstein equations.

The expression for the Ricci tensor, Eq. (94), has 13
terms (each of which contains contractions): four terms
proportional to @�@.g*,, and nine terms proportional to
@�g*, (when symmetrizations and antisymmetrizations
are expanded out). We construct a positive-definite quan-
tity, Rrms

*, , to which the size of R*, can be compared, by
taking the square root of the sum of the squares of these 13
terms (for each * and ,). We then construct norms of these
quantities by integrating them over our spacelike slices:

kRk2 �
Z X

*�,

�R*,�
2 ���
g

p
d3x; (95)

kRrmsk2 �
Z X

*�,

�Rrms
*, �

2 ���
g

p
d3x: (96)

We note that the Rrms
*, andR*, used to compute these norms

are the quasi-Cartesian components of these quantities
used in our code. We use the ratio kRk=kRrmsk as our third
independent measure of the degree to which our numerical
solutions satisfy the original Einstein equations. When
both kRk=kRrmsk and kCk=k@uk are small, we have con-
siderable confidence in the accuracy of our solutions even
in cases where the exact solution is not known.

VIII. NUMERICAL EVOLUTIONS

We have studied the efficacy of the boundary conditions
proposed in Secs. IV, V, and VI by performing evolutions
of various single black-hole spacetimes. These simulations
evolve either unperturbed Schwarzschild black holes in
Kerr-Schild coordinates,

ds2 � �dt2 �
2M
r

�dt� dr�2 � dr2 � r2d�2; (97)

or fully dynamical black holes that are small perturbations
of the Schwarzschild spacetime (but we solve the full
nonlinear equations in our code). We express all lengths
and times associated with these simulations in units of the
bare black-hole massM, even for the perturbed solutions in
064020
which the ADM mass exceeds M. The computational
domains for these evolutions consist of one or more con-
centric spherical shells that cover the space from rmin �
1:9M ( just inside the black-hole event horizon) to some
maximum value rmax. We have run evolutions using several
different rmax in the range 6:9M � rmax � 41:9M.

The initial data for these evolutions are prepared by
applying an odd-parity outgoing quadrupole-wave pertur-
bation with amplitude 4� 10�3 to the Kerr-Schild spatial
metric and its time derivative. This outgoing wave pulse is
constructed by Teukolsky’s method [44] with the generat-
ing function G�r� that determines the radial profile of the
wave: G�r� � Ae��r�r0�2=w2

, where A � 4� 10�3, r0 �
5M and w � 1:5M. Then we solve numerically the full
nonlinear conformal ‘‘thin-sandwich’’ form of the initial
value equations to obtain constraint-satisfying perturbed
black-hole initial data (see Pfeiffer et al. [45]). In the
resulting initial data set, the ADM energy exceeds the
apparent horizon mass by about 10�5M. Figure 1 illus-
trates the initial data for these perturbed black-hole evolu-
tions. The quantity shown in Fig. 1 is a measure of the

outgoing gravitational-wave flux,
�����������������������������������
U8�
ij U

8�
kl g

ikgjl=2
q

, de-

fined in Eq. (74). This quantity is equivalent to the
Newman-Penrose component of the Weyl tensor j�4j.
The outer radius of the computational domain for the initial
data shown in Fig. 1 is rmax � 11:9M.

For simplicity we use fixed-gauge evolutions: the lapse
densityQ and the shiftNi are set to their initial Kerr-Schild
values, Eq. (97), for all times. For the perturbed initial data,
we also set Q and Ni to the unperturbed analytical Kerr-
Schild values, ignoring the solutions for these fields given
by the conformal thin-sandwich initial value equations.
Although more sophisticated gauge conditions should re-
sult in better long-term evolutions, these simple fixed-
-11
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FIG. 2 (color online). Constraint violations and energy norms
for unperturbed black-hole evolutions using freezing boundary
conditions. The outer boundary is at rmax � 41:9M; and three
different radial resolutions, Nr � 17, 21, and 26, show numerical
convergence.
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gauge conditions are adequate for the tests of the new
constraint-preserving boundary conditions, which are of
primary interest here.

The KST evolution system has a number of freely speci-
fiable parameters. We set the KST parameters to the values

0 � 0:5, 
1 � �12, 
2 � �1, 
3 � 0:16, and 
4 �
�0:96 for all the evolutions discussed here. This choice
of parameters is one of the special cases that leave the
parameter q of Eq. (A14) ill defined. In this case the choice
of q is arbitrary, and we set q � 1 in all of the evolutions
discussed here (since this yields better performance than
q � 0). For these parameter choices, both the fundamental
evolution equations and the constraint evolution system are
symmetric hyperbolic, and all characteristic speeds (rela-
tive to hypersurface orthogonal observers) are either 0 or
�1; in particular, v2

1 � v2
2 � v2

3 � 1. The values of the
KST parameters used here are the same as those used in
previous studies [41,42]. However, the current evolution
equations are rather different from those used in
Refs. [41,42], in which the evolution equations were modi-
fied by a kinematical change of variables and by the
addition of terms proportional to the constraint Ckij. Here
we perform no such modification; that is, the kinematical
parameters defined in Refs. [29,41,42] are chosen here to
have the values k̂ � 1, ẑ � â � b̂ � ĉ � d̂ � ê � 0. The
values of the KST parameters in Refs. [41,42] were chosen
to minimize the growth rate of the constraints for evolu-
tions of a single black hole in Painlevé-Gullstrand coor-
dinates. Because we use a rather different set of evolution
equations, and because we evolve black holes in Kerr-
Schild coordinates, we do not expect that these parameter
values are optimal for our current evolutions.

A. Unperturbed black holes

In this subsection we describe three numerical tests
involving 3D evolutions of unperturbed Schwarzschild
black holes. These evolutions use the Schwarzschild spa-
tial metric and extrinsic curvature in Kerr-Schild coordi-
nates, Eq. (97), as initial data. The first and second tests
explore the evolutions of these black holes using simple
‘‘freezing’’ boundary conditions. Freezing boundary con-
ditions set the time derivatives of each of the incoming
characteristic fields to zero at the boundaries, i.e.,

dtu�̂ � 0; (98)

for all �̂ with v��̂� < 0 [where dtu�̂ is defined in Eq. (49)].
These boundary conditions are known to make the evolu-
tion equations mathematically well posed, but they are also
known to do a poor job of preventing the influx of con-
straint violations into the computational domain for fully
dynamical time-dependent solutions. Time-dependent evo-
lutions with freezing boundary conditions have been
shown to be stable and numerically convergent [3,14]
(and so represent real solutions to the continuum evolution
equations), but they also violate the constraints and con-
064020
sequently do not represent physical solutions to the full
constrained evolution system. Despite these limitations,
freezing boundary conditions are appropriate and have
been used rather successfully to evolve time independent
solutions such as the unperturbed black-hole spacetimes
considered in this subsection [41,42].

Our first test evolves an unperturbed Schwarzschild
black hole on a computational domain extending from
rmin � 1:9M to rmax � 41:9M. This domain is subdivided
into eight subdomains, each of width 5M, each using the
same angular resolution ‘max � 21, and each having the
same radial resolution Nr � 17, 21 or 26. This angular
resolution is much higher than necessary to resolve this
spherically symmetric spacetime, but we wanted to verify
the stability of our code even for large values of ‘max.
Figure 2 shows two measures of the errors in these evolu-
tions: kCk=k@uk and �E=E0. These results show that our
error measures converge toward zero as we increase the
radial resolution Nr. These results also show that our
computational methods are capable of evolving unper-
turbed black-hole solutions for hundreds (if not thousands)
of M, which is consistent with previous results using a
similar evolution system [41,42].

As a second test, we explore the effects of changing the
location of the outer boundary of the computational do-
main, rmax, for these unperturbed black-hole evolutions
with freezing boundary conditions. Figure 3 shows the
constraint violations kCk=k@uk and the energy norms
�E=E0 for evolutions using several different outer radii:
-12
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FIG. 3 (color online). Constraint violations and energy norms
for unperturbed black-hole evolutions with a range of outer
boundary radii, rmax � 6:9M, 11:9M, 16:9M, 41:9M. These
runs all use Nr � 26 in each subdomain, but use different
numbers of subdomains to achieve different rmax. They all use
freezing boundary conditions, and ‘max � 21.
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FIG. 4 (color online). Constraint violations and energy norms
for an unperturbed black-hole evolution using freezing boundary
conditions. The outer boundary is at rmax � 11:9M; and three
different radial resolutions, Nr � 17, 21, and 26, show numerical
convergence to an exponentially growing solution.
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FIG. 5 (color online). Constraint violations and energy norms
for unperturbed black-hole evolutions using our new boundary
conditions. The outer boundary is at rmax � 41:9M; and three
different radial resolutions, Nr � 17, 21, and 26, show numerical
convergence.
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rmax � 6:9M, 11:9M, 16:9M, and 41:9M. All of these
evolutions use the same ‘max � 21, and Nr � 26 in each
subdomain. Each computational subdomain has width 5M,
so the number of subdomains is adjusted to achieve the
desired rmax. Figure 3 shows that these evolutions have an
instability that causes kCk=k@uk and �E=E0 to grow ex-
ponentially. This instability becomes weaker as rmax in-
creases; we find (by measuring the growth rate for
rmax � 6:9M, 11:9M, 16:9M, 21:9M, and 31:9M) that the
growth rate is M=. � e�rmax=13M. So this appears to be a
constraint-violating instability that is influenced by the
location of the outer boundary of the computational do-
main. Figure 4 demonstrates for the rmax � 11:9M case
that these unstable evolutions are numerically convergent,
by showing that kCk=k@uk and �E=E0 approach an ex-
ponentially growing solution as Nr increases. Figure 4 also
shows that the growth rate of the instability is the same for
all values of Nr in this rmax � 11:9M case. (Numerical
convergence and independence of the growth rate with Nr

is also observed for the other values of rmax that we tested.)
We have also verified that the growth rate of this instability
does not depend on the angular resolution ‘max for 7 �
‘max � 21. These checks suggest that this constraint-
violating instability is a solution of the continuum differ-
ential equations, and is not primarily an artifact of the
discrete numerical representation of the equations used
here.
064020-13
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For the third numerical test we use our new boundary
conditions to evolve the same unperturbed black-hole ini-
tial data on the same computational domains used in the
first two tests. These new boundary conditions include the
new constraint-preserving boundary conditions, Eqs. (52)–
(59) with *5 � 0:75 and *6 � �0:5, the new physical
boundary condition, Eq. (78), and the new gauge boundary
conditions, Eqs. (80) and (82). Figure 5 depicts kCk=k@uk
and �E=E0 for evolutions of the unperturbed black-hole
initial data on a computational domain with rmax � 41:9M.
(Except for boundary conditions, the evolutions in Fig. 5
are identical to those of Fig. 2.) The evolutions of Fig. 5
show that both the constraints and the energy norms of
these solutions decrease toward zero as Nr increases.

At late times, the highest resolution curve plotted in
Fig. 5 shows the beginning of an exponentially growing
mode. We call this a gauge mode, because �E=E0 begins to
grow in these solutions without a corresponding growth in
the constraints kCk=k@uk. This gauge mode grows more
rapidly if we move the outer boundary inward, as can be
seen in Fig. 6, which shows the analogous evolutions with
outer boundary at rmax � 11:9M. The constraints remain
roughly constant in the evolutions of Fig. 6 for a consid-
erable amount of time after �E=E0 begins to grow rapidly.
Comparing the results of Fig. 4 with those of Fig. 6, we see
that our constraint-preserving boundary conditions do im-
prove the constraint violations in these evolutions, but only
slightly. However, this improvement comes at the expense
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FIG. 6 (color online). Constraint violations and energy norms
for an unperturbed black-hole evolution using our new boundary
conditions. The outer boundary is at rmax � 11:9M; and three
different radial resolutions, Nr � 17, 21, and 26, show numerical
convergence to an exponentially growing solution.
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of introducing a new gauge-mode instability. At very late
times we see that the highest resolution evolution also
shows signs of a constraint-violating instability, although
it grows more slowly than the gauge mode. The growth rate
of the constraints seen in the highest resolution evolution
of Fig. 6 is the same as the growth rate of the instability
seen in Fig. 4, to within about 5%. This suggests that both
of these constraint-violating instabilities might be caused
primarily by bulk rather than boundary constraint
violations.

The gauge-mode instability seen in Figs. 5 and 6 is
dominated by its ‘ � 3 spherical-harmonic component.
Recall that we impose the gauge-fixing boundary condi-
tion, Eq. (82), by filtering out everything but the ‘ � 2
components of dtU1�. If we change this filtering to impose
Eq. (82) on only the ‘ � 1 components of dtU1�, the
gauge-mode instability is dominated by its ‘ � 2
spherical-harmonic component, and grows more rapidly
than in Figs. 5 and 6. Thus the gauge boundary condition,
Eq. (82), does improve the stability of the gauge mode at
least to some degree. However, if we impose Eq. (82)
without any filtering, the instability grows much faster
than the rate seen in Figs. 5 and 6; and this growth rate
increases as ‘max increases, so the evolution becomes non-
convergent. Recall that we use the simplest possible gauge
conditions: we set the lapse density Q and the shift Ni to
their analytic values throughout the evolution. A more
0 100 200 300
t/M

10
-9

10
-6

10
-3

10
0

||C
|| 

/ |
|∂

u|
|

Freezing BC

New BC
N

r
 = 21

N
r
 = 31

N
r
 = 41

N
r
 = 51

N
r
 = 51

FIG. 7 (color online). Constraint violations for evolutions of
perturbed black holes using freezing (dashed curve) and our new
boundary conditions (solid curves). Radial resolutions Nr � 21,
31, 41, and 51 are shown for the new boundary conditions, while
only Nr � 51 is shown for the freezing case. The outer boundary
is at rmax � 21:9.
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FIG. 8 (color online). Four-dimensional Ricci-tensor residual
of Eq. (95) for the perturbed black-hole evolutions shown in
Fig. 7.
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sophisticated treatment of gauge conditions (not just at the
boundaries, but throughout the volume) is probably needed
to control these unstable gauge modes.

B. Perturbed black holes

In this subsection we describe 3D numerical evolutions
of perturbed black-hole spacetimes. The initial data for
these evolutions are discussed at the beginning of
Sec. VIII. We evolve these initial data using the same
nonlinear equations and evolution methods used in
Sec. VIII A for the unperturbed cases. These perturbed
black-hole initial data include a short-wavelength
gravitational-wave packet, so more radial collocation
points are required to achieve an accuracy comparable to
that of the unperturbed black-hole cases.

Figure 7 shows the constraint error kCk=k@uk for evo-
lutions of these perturbed black-hole initial data. These
simulations are performed on a computational domain with
four concentric subdomains, each of width 5M and ‘max �
11, and with outer boundary at rmax � 21:9. The dashed
curve in Fig. 7 shows the results of using the simple
freezing boundary conditions, Eq. (98): a large constraint
violation is generated at t � 20M when the wave pulse
passes through the outer boundary of the computational
domain. The size of this constraint violation is comparable
to the amplitude of the wave, and does not converge away
with increased resolution. Only the highest radial resolu-
tion is shown, because the lower resolution curves are
almost identical. These simulations with freezing boundary
conditions are numerically convergent and do represent
solutions to the continuum evolution equations. But they
do not satisfy all the equations (i.e., the constraints) of the
full constrained evolution system, so they do not represent
physical solutions to the Einstein equations. These solu-
tions demonstrate that freezing boundary conditions can-
not be used to model the physical gravitational waves in a
system after those waves interact with the boundaries.

Also plotted in Fig. 7 are evolutions of the same per-
turbed black-hole initial data on the same computational
domain, but now using our new boundary conditions: the
new constraint-preserving boundary conditions, Eqs. (52)–
(59) with *5 � 0:75 and *6 � �0:5, the new physical
boundary condition, Eq. (78), and the new gauge boundary
conditions, Eqs. (80) and (82). In these cases the constraint
violation generated as the wave passes through the outer
boundary converges away with increasing radial resolu-
tion. The constraint violation is 8 orders of magnitude
smaller than with freezing boundary conditions in the
highest resolution case. Figure 8 shows an independent
measure of how well these numerical evolutions satisfy
the original Einstein equations by plotting the average
value of the four-dimensional Ricci tensor kRk=kRrmsk
[see Eq. (95)] for the same simulations shown in Fig. 7.
Figure 8 confirms the results seen in Fig. 7: the Einstein
equations are violated when the wave hits the boundary
064020
with freezing boundary conditions, while the new bound-
ary conditions are quite effective in reducing this violation
by many orders of magnitude.

Two interesting features are seen in the evolutions in
Figs. 7 and 8 which use the new boundary conditions: first,
there is an unstable exponential growth in the highest
resolution runs starting at about t � 200M, and second,
there is some complicated structure starting at about t �
20M which is reduced and finally vanishes at the highest
radial resolution. Consider first the unstable exponential
growth. Figure 9 shows this exponential growth more
clearly by displaying the constraint violations for a range
rmax. The simulations in Fig. 9 have Nr � 51 and ‘max �
11 in each subdomain, while rmax is varied by adjusting the
number of subdomains. However, in order to resolve the
small incoming waves reflected off the outer boundary, we
need higher resolution near the outer boundary. The sub-
domains are made narrower therefore for larger r, as
described below. Figure 9 shows that the exponential
growth rate of this constraint-violating instability de-
creases as rmax increases. The growth rate of this
constraint-violating instability is about 1.7 times larger
than the growth rate seen in the unperturbed black-hole
evolutions of Fig. 3, for each rmax. The similarity in size
and dependence on the location of the outer boundary
suggests that the instabilities in Figs. 3 and 9 may have
the same basic cause. If so then this cause is probably bulk
generated constraint violations, since the evolutions in
Fig. 9 use constraint-preserving boundary conditions.
-15
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The second interesting feature seen in Figs. 7 and 8 is the
complicated structure of the curves starting at about t �
20M, when the gravitational wave passes through the outer
boundary. This structure seems to be caused by the (very
weak) reflection of the gravitational-wave pulse back into
very short-wavelength ingoing waves. Consider an out-
going wave with coordinate velocity near one (the speed
of light) as it approaches the outer boundary. Since the
nonlinear evolution equations and our boundary conditions
couple the various characteristic fields, this wave will be
mixed with and partially reflected as an ingoing wave
which propagates at the much smaller shift speed Nini �
1, even in the continuum limit. If the original outgoing
wave has wavelength A, then the reflected incoming wave
that propagates at the shift speed will have the much
smaller wavelength ANini � A. As the outer boundary
radius is increased, the amplitude of these reflected waves
is decreased. But their wavelength also decreases (because
the shift Ni decreases as r increases) and therefore these
reflected waves become more difficult to resolve numeri-
cally for larger rmax.

One approach is to ignore these very small amplitude
nonphysical reflected waves and not even attempt to re-
solve them. However, these reflected waves contribute
(slightly) to the constraint quantities, so leaving them
unresolved would introduce constraint violations that are
roughly the size of the reflected waves. If this constraint
violation is smaller than the numerical truncation error in
064020
the remainder of the domain, then no harm is done by
ignoring the reflected waves. However, for the pseudospec-
tral simulations presented here, the truncation error is so
small elsewhere that the contributions of the reflected
waves can dominate, obscuring our convergence tests.
Therefore, we choose to resolve the reflected waves in
the tests presented here.

Another approach would be to attempt to eliminate the
problem completely by making a smarter choice for the
shift Ni. The radial component of the shift could be made
to approach a constant value rather than falling to zero as r
increases. This would limit the amount of blueshift the
reflected waves could experience. Alternatively the radial
component of the shift could be made to pass through zero
and switch sign [18], thus eliminating the shift-speed in-
coming waves completely. These changes would either
limit or entirely eliminate the problem, but possibly at
the expense of introducing other gauge-related difficulties.
Since the choice of gauge is not the main subject of this
paper, we decided to deal with the reflected-wave problem
here by increasing the resolution in the subdomains near
the outer boundary. For instance, the rmax � 26:9M curve
in Fig. 9 was produced using eight subdomains with
boundaries at r � 1:9M, 6:9M, 11:9M, 16:9M, 19:4M,
21:9M, 23:567M, 25:233M, and 26:9M, each using Nr �
51 collocation points.

C. Angular instability

In addition to the constraint-violating instability and the
gauge-mode instability discussed in Secs. VIII A and
VIII B, there are also signs of a very weak instability that
primarily affects the highest angular modes of the evolved
fields. This angular instability has a growth rate that in-
creases with increasing ‘max, and so this instability appears
to be nonconvergent. This instability is not evident in any
of the figures shown so far, and is negligible on the time
scales of interest here except for simulations using very
large ‘max and very small rmax. In order to see this insta-
bility clearly, we look at a quantity that is linear in the
dynamical fields and vanishes unless the instability is
present. To this end we define

� �K � �gij�Kij � �Kij�; (99)

where �gij and �Kij are exact solutions for the three-metric
and extrinsic curvature, and Kij is the numerical extrinsic
curvature from our simulations. To see the angular insta-
bility we project � �K onto the spherical-harmonic basis at
each radial collocation point rp,

� �Kp‘m �
Z
Y‘m�8;’�� �K�rp; 8; ’� sin8d8d’; (100)

and then average these over rp and m by forming

�� �Krms
‘ �2 � N�1

r �2‘� 1��1
X

p;jmj�‘

�� �Kp‘m�
2: (101)
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Figure 10 shows the highest unfiltered components of
� �Krms

‘ for evolutions of unperturbed black holes. These
evolutions use our new boundary conditions, and are per-
formed on a single computational subdomain with Nr �
26 and rmax � 6:9M. Each curve in Fig. 10 is generated
from a run with a different ‘max, and the � �Krms

‘ plotted is
the one with ‘ � ‘max � 4, the largest ‘ that is untouched
by our angular filtering procedure. Each ‘ component
grows exponentially at a rate that increases with ‘. (The
extremely rapid growth in the ‘ � 10, 12, and 15 compo-
nents that occurs just before the simulation crashes is
presumably due to nonlinear coupling that becomes im-
portant only when the gauge mode becomes large.) For all
cases plotted in Fig. 10 except ‘max � 21, the simulation
crashes because of the (convergent) gauge-mode instability
described earlier. For these cases the angular instability is
orders of magnitude smaller than the unstable gauge mode
for the entire duration of the simulation. Only for ‘max �
21 does the angular instability dominate before the end of
the simulation.

We have explored the behavior of this angular instability
in two ways. First we verified that the growth rate for a
given ‘ component of � �Krms

‘ is independent of the ‘max

used to compute it. We did this by comparing the curves in
Fig. 10 with graphs of the same quantities computed from a
single run with ‘max � 21. The resulting plot looks almost
identical to Fig. 10, except at very late times when the
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FIG. 10 (color online). Highest unfiltered components of
� �Krms

‘ , defined in Eq. (101), for evolutions of unperturbed black
holes. These evolutions use a single subdomain with Nr � 26
and rmax � 6:9M.
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simulations begin to crash. And second, we explored the
growth rates of the angular instability for fixed ‘ as a
function of rmax. Figure 11 shows � �Krms

17 for runs with
different rmax. We increased rmax in these runs by adding
more subdomains of width 5M, each having Nr � 26 and
‘max � 21. Because the angular instability is largest near
the outer boundary, we compute � �Krms

17 only in the outer-
most subdomains for these plots.

The curves in Fig. 11 show that the angular instability
becomes weaker and weaker as we increase the size of the
computational domain. To study this behavior quantita-
tively, we plot the exponential growth rates of � �Krms

17 as a
function of rmax; these are shown as circles in Fig. 12. The
error bars in the inset correspond to the variation in slopes
that we extract from data segments of different length, but
these error bars are not shown in the main plot in Fig. 12
because they are the same size as the plot symbols. Rather
than falling off gradually like 1=rmax as might have been
expected, the growth rate in Fig. 12 appears to go to zero at
a finite value of rmax. This finite value of rmax depends on ‘;
to show this dependence, we also plot in Fig. 12 the
exponential growth rates of � �Krms

12 (shown as triangles in
the plot) for the same runs. The best linear fits through the
‘ � 17 and ‘ � 12 growth rates have the same slope, but
the growth rate of the ‘ � 12 mode goes to zero at a
smaller rmax. Figure 12 suggests that for a given ‘max there
are no angular instabilities at all when rmax is sufficiently
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FIG. 11 (color online). � �Krms
17 for unperturbed black-hole evo-

lutions on domains with different rmax. This quantity is evaluated
on the outermost domain which has width 5M, Nr � 26, and
‘max � 21. These evolutions use our new boundary conditions.

-17



0 10 20 30 40 50
r
max

 / M

0

0.05

0.1

0.15
G

ro
w

th
 r

at
e:

  
M

/τ

15 20 25 30

0

0.01

0.02

0.03

FIG. 12 (color online). Exponential growth rate of � �Krms
17

(circles) and � �Krms
12 (triangles) for different rmax in evolutions

of unperturbed black holes with our new boundary conditions.
The inset shows an enlargement with the best linear fits through
the points 16:9M � rmax � 26:9M.

KIDDER et al. PHYSICAL REVIEW D 71, 064020 (2005)
large. No angular instability has been detected in any of our
runs with ‘max � 21, t � 300M, and rmax > 27M. Our
results also suggest that for a given rmax, an angular insta-
bility with arbitrarily large growth rate could be found by
making ‘max sufficiently large.

We see no angular instability at all when we use freezing
boundary conditions. Furthermore, the angular instability
shown in Figs. 10–12 is present whether or not we use the
physical boundary condition, Eq. (78), or the gauge bound-
ary conditions, Eqs. (80) and (82). [Although as noted
before, an angular instability dominates when Eq. (82) is
imposed on all the spherical-harmonic components of
U1�.] It is unclear whether this angular instability is due
to our numerical method or whether the new constraint-
preserving boundary conditions yield an ill-posed initial-
boundary-value problem at the continuum level. We note
however that for the resolutions and time scales of interest
here, this instability remains small and can be controlled
quite effectively by modestly increasing the radius of the
outer boundary. And the numerical evolutions, such as
those in Figs. 7–9, produced by these methods do appear
to be accurate solutions of the Einstein equations: both the
constraints kCk=k@uk and the four-dimensional Ricci ten-
sor kRk=kRrmsk can be made arbitrarily small. Therefore
from a practical point of view it may not matter whether
these boundary conditions are formally well posed, or that
our computational methods contain a very mild noncon-
vergent angular instability.
064020
IX. DISCUSSION

This paper constructs new boundary conditions for the
KST form of the Einstein evolution system that are de-
signed to prevent the influx of constraint violations and
physical gravitational waves into the computational do-
main. From a mathematical point of view, these boundary
conditions are Neumann like (in the sense that they place
conditions on the normal derivatives of the incoming char-
acteristic fields). Boundary conditions of this type have not
been studied as comprehensively as the simpler ‘‘maxi-
mally dissipative’’ boundary conditions (which are
Dirichlet like in that they place conditions on the values
of incoming characteristic fields themselves). Rigorous
mathematical well-posedness theorems do not yet exist
for hyperbolic evolution systems with these Neumann-
like boundary conditions. So additional mathematical
analysis of these conditions is urgently needed to deter-
mine whether they are well posed both at the continuum
differential equation level and the discrete numerical level.
Should this analysis reveal that these conditions are ill
posed, then alternate ways of preventing the influx of
constraint violations and physical gravitational waves in
these systems would be needed even more urgently.

Our numerical tests of these new constraint-preserving
and physical boundary conditions show them to be quite
effective: constraint violations can be reduced to roundoff-
level errors in dynamical black-hole evolutions. Never-
theless, several weak instabilities did appear in our numeri-
cal results, and additional work is needed to sort out
exactly what their causes are and what methods can be
used to control them. Are the constraint-violating instabil-
ities seen in the evolutions of Figs. 3 and 9 really caused by
bulk constraint-violating terms in the constraint evolution
equations (as we surmise), and can optimal constraint
projection methods such as those developed for the scalar
field system [3] be used to control them? Can the gauge
instabilities seen in Fig. 6 be controlled by the introduction
of dynamical evolution equations for the lapse and shift?
Are the nonconvergent angular instabilities seen in Figs. 10
and 11 a symptom of ill posedness of these boundary
conditions at the continuum or the discrete numerical
level? And what can be done to cure these problems?
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APPENDIX A: KST CHARACTERISTIC FIELDS

Explicit expressions are given here for the characteristic
fields of the KST form of the Einstein evolution system.
These characteristic fields consist of the collection u�̂ �

fgij; Z1; Z2
i ; Z

3
i ; Z

4
i ; Z

5
ij; Z

6
kij; U

1�; U2�
i ; U3�; U4�

ij g, and can
be written in terms of the principal evolution fields, Eq. (7):

Z1 � 
3n
iD1

i � 2�1� 
4�n
iD2

i ; (A1)

Z2
i � 
4PjiD

1
j � �
3 � 2
4�Pjin

knlDjkl; (A2)

Z3
i � 3PjiD

1
j � 2PjiD

2
j � 4Pjin

knlDjkl; (A3)

Z4
i � 48v2

2n
lPjin

kDljk � 2
4�5� 9
2�P
j
iD

2
j

� 3�1� 3
2 � 4
0��4� 
3��P
j
iD

1
j � Pjin

knlDjkl�

� 2�6� 
4��5� 9
2�Pjin
knlDjkl; (A4)

Z5
ij �

�
PaiP

b
j �

1

2
PijPab

�
nkDabk; (A5)

Z6
kij � Pcabkij Dcab; (A6)

U1� � ��1� 2v2
1 � �1� 2
1�q�n

iD1
i

� v1�1� q�PijKij � 2v1n
inj�Kij � v1n

kDkij�

� �1� 3
2 � �1� 2
1 � 
2�q�n
iD2

i ; (A7)

U2�
i � �2v2nkPjiKjk � �1� 2
0�PjiD

1
j ;

� �1� 
2�PjiD
2
j � �2
0 � 
2�Pjin

knlDjkl; (A8)

U3� � ��1� 2
1�niD1
i � �1� 2
1 � 
2�niD2

i

� v3P
ijKij; (A9)

U4�
ij �

�
PaiP

b
j �

1

2
PijP

ab
�

� �Kab � nkDkab � �1� 
2�n
kD�ab�k�: (A10)

In these expressions the two distinct traces of Dkij are
written as

D1
i � PjkDijk; (A11)

D2
i � PjkDkij; (A12)

where

Pij � gij � ninj; (A13)

is the projection orthogonal to ni. The quantities v1, v2 and
v3 are defined in Eqs. (8)–(10), and q is given by

q �
1� 3v21 � 4v2

2

v21 � v2
3

: (A14)
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Finally, the projection tensor Pcabkij is defined by

Pcabkij � PckP
�a
iP

b�
j �

3

4
PijP

c
kP

ab �
1

2
Pc�aPb�kPij

�
1

2
PabPc

�iPj�k � Pc�aPb�
�iPj�k: (A15)
These expressions are the completely general forms of the
characteristic fields for the KST system. They reduce to the
expressions for the restricted case v2

1 � v2
2 � v33 � 1 pub-

lished previously in Ref. [29].
The characteristic fields U1�, U2�

i , and U3� have char-
acteristic speeds �v1, �v2, and �v3 respectively (relative
to the hypersurface normal observers); the fields U4�

ij have
speeds �1; the fields fZ1; Z2

i ; Z
3
i ; Z

4
i ; Z

5
ij; Z

6
kijg all have

characteristic speed zero. The characteristic fields are lin-
early independent (so the KST evolution system is strongly
hyperbolic) if v1 � 0, v2 � 0, v3 � 0, and v1 � v3. In the
case when v1 � v3, the characteristic fields U1� given in
Eq. (A7) are not defined because the quantity q given in
Eq. (A14) is not defined. We find that there are nevertheless
a complete set of characteristic fields in the v1 � v3 � 0
case so long as

1� 3v2
1 � 4v2

2: (A16)
In this case, the characteristic fields U1� are just given by
the expression in Eq. (A7) with q � 0. Any other constant
value of q is also acceptable, with the result being a
redefinition of U1� by the addition of q times U3� (which
has the same characteristic speed in this case). The choice
q � 0 is probably the simplest, but other choices might be
desirable under some circumstances. For example, for
symmetric hyperbolic systems it might be better to make
the eigenvectors mutually orthogonal in terms of the sym-
metrizer metric. The symmetric hyperbolicity of the KST
system is discussed in Appendix B of Ref. [32].

It is also useful to have explicit expressions for the
inverse transformation, u� � e�

�̂
u�̂, that expresses the

principal evolution fields in terms of the characteristic
fields. These inverse transformations for the general KST
form of the Einstein evolution system are given by

Kij � ninj

�
1� q
4v3

�U3� �U3�� �
U1� �U1�

4v1

�

�
n
�iU

2�
j� � n

�iU
2�
j�

2v2
� Pij

U3� �U3�

4v3

�
1

2
�U4�

ij �U4�
ij �; (A17)
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Dkij � nkninjn
cnanbDcab � ninjP

c
kn

anbDcab

� 2nkn�iP
a
j�n
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2
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2�nkZ
5
�ij� � 2Z5

k�inj� � Z6
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�
1

2
nkPijn

cD1
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3

4
PijP

c
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c �

1

2
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c
j�D

1
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� n
�iPj�kn

cD2
c �

1

2
PijPckD

2
c � Pk�iP

c
j�D

2
c:

(A18)

The terms involvingDkij on the right sides of Eq. (A18) are
given by

ncnanbDcab � �v21�1� 2
1 � 
2� � 
2�2� 3
1��
Z1

2v2
1v

2
3

�
1� 
3 � 
4 � q

4v2
3

�U3� �U3��

�
U1� �U1�

4v2
1

; (A19)

Pcin
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1� 3
2 � 4
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8v2
2

Z2
i �


4�1� 
2�

8v2
2

Z3
i

�

4

8v22
�U2�

i �U2�
i �; (A20)

Pain
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5� 9
2

16v2
2

Z2
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4� 
3

16v2
2

� �U2�
i �U2�

i � � �3�1� 
2��4� 
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� 
4�5� 9
2��
Z3
i

48v22
�

Z4
i
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2
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1� 
4

2v23
�U3� �U3�� � �1� 2
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2�

Z1

2v2
3

;

(A22)

ncD2
c �


3

4v2
3

�U3� �U3�� � �1� 2
1�
Z1

2v23
; (A23)
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PciD
1
c � �1� 
2��
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4�

Z3
i

8v22
� �2� 3
2 � 2
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i

4v22

�
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8v2
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PciD
2
c � �
3�1� 2
0� � 
4�2� 
2 � 6
0��

Z3
i

8v2
2

� �3
3 � 2
4�
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i

16v22

� �4� 3
2 � 14
0�
Z2
i
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APPENDIX B: HYPERBOLICITY OF
CONSTRAINT EVOLUTION

In this Appendix we evaluate the hyperbolicity of the
KST constraint evolution system, Eqs. (15)–(18). This
system can be written in the more abstract form

@tc
A � AkAB@kc

B � FABc
B: (B1)

In Sec. III we demonstrated the strong hyperbolicity of the
KST constraint evolution system by showing that the char-
acteristic matrices nkAkAB have a complete set of eigen-
vectors. Here we determine the conditions under which this
constraint evolution system is also symmetric hyperbolic,
i.e., that there exists a symmetric positive definite SAB (the
symmetrizer) with the property that it symmetrizes the
characteristic matrices: AkAB � SACAkCB � AkBA.

The most general symmetrizer for the constraint evolu-
tion system can be written conveniently by defining the
following quantities associated with the constraint Cklij:

D kij � 1k
abCabij; (B2)

where 1kij is the spatial volume element. We also define

D 1
i � gjkDijk; (B3)

D 2
i � gjkDjik; (B4)

~D kij � Dkij �
1

5
�D1

�igj�k � 2D1
kgij �D2

kgij

� 3D2
�igj�k�: (B5)

Then the most general symmetrizer constructed from the
metric gij is
dS2 � SABdc
AdcB

� �1dC
2 � �2g

iadCidCa � �3g
iagjbgkcd ~D�kij�d ~D�cab� � �4g

iagjbgkc�d ~Dkij � d ~D�kij���d ~Dcab � d ~D�cab��

� �5g
iadD1

i dD
1
a � �6g

iadD2
i dD

2
a � 2�7g

iadD1
i dD

2
a: (B6)
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The conditions needed to ensure that this symmetrizer is
positive definite are �a > 0 for a � 1; . . . ; 6 and �5�6 >
�2
7. There are no cross terms between the momentum

constraint Ci and the D1
i or D2

i constraints, because the
resulting terms would have the wrong parity. Using the
principal parts of the KST constraint evolution system
given in Eqs. (15)–(18), we find that the conditions needed
for symmetric hyperbolicity are

0 � �1

�
1�

1

2

3 � 
4

�
� �2�1� 2
1�; (B7)

0 � 2�5�
3 � 3
4� � �2
0 � �7�2
4 � 
3�; (B8)

0 �
1

2
�2 � �6�
3 � 2
4� � �7�2
3 � 6
4�; (B9)

0 �
1

2
�2
2 � �4
3: (B10)

The problem now is to determine when these symmet-
rization conditions can be satisfied. For simplicity we focus
attention here on the case where all of the characteristic
speeds of the principal evolution system have the physical
values: 0, �1. These conditions on the characteristic
speeds imply the following conditions on the parameters:


0 �
1

2
; (B11)


3 �
�8

4
2 � �5� 3
2��1� 2
1�
; (B12)


4 �
1� 
2 � �1� 2
1��5� 3
2�

4
2 � �5� 3
2��1� 2
1�
: (B13)

The analysis in Lindblom and Scheel [41] shows that the
principal evolution system is symmetric hyperbolic in this
case for all values of the parameters 
1 and 
2 that satisfy
the following inequalities:

�
5

3
< 
2 < 0; (B14)

4
2 � �5� 3
2��1� 2
1� � 0: (B15)

Substituting the conditions Eqs. (B11)–(B13) into the
symmetry conditions, Eqs. (B7)–(B10), we find the follow-
ing conditions on the �a:

�2 �
�1�5� 3
2�

�1� 2
1��4
2 � �5� 3
2��1� 2
1��
; (B16)

�4 �
�1
2�5� 3
2�

16�1� 2
1�
; (B17)
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�5 �
�1�5� 3
2� � 8�7�1� 2
1��2
2 � 
1�5� 3
2��

8�5� 3
2��2� 7
1 � 6
2
1�

;

(B18)

�6 �
�5� 3
2���1 � 8�7�2� 7
1 � 6
2

1��

8�1� 2
1��2
2 � 
1�5� 3
2��
: (B19)

The constraint evolution system is symmetric hyperbolic if
and only if �a > 0 for a � f1; 2; 3; 4; 5; 6g and �5�6 >�2

7.
If the principal evolution system is symmetric hyperbolic
then 5� 3
2 > 0 [from Eq. (B14)], thus we see from
Eq. (B17) that we must have

1� 2
1 < 0; (B20)

or equivalently 
1 <� 1
2 if the constraint evolution system

is to be symmetric hyperbolic as well. This condition
guarantees that 4
2 � �5� 3
2��1� 2
1�< 0 and so the
second inequality in Eq. (B15) is automatically satisfied in
this case. Consequently Eq. (B16) places no further re-
strictions on the parameters 
1 and 
2.

To analyze the inequalities on �5 and �6 implied by
Eqs. (B18) and (B19), we restrict our attention to the
simple case where �7 can be set to zero. In this case
Eqs. (B18) and (B19) simplify considerably:

�5 �
�1

8�2
1 � 1��3
1 � 2�
; (B21)

�6 �
�5� 3
2��1

8�1� 2
1��2
2 � 
1�5� 3
2��
: (B22)

Equation (B22) guarantees that the coefficient �6 is posi-
tive without any additional restrictions, while Eq. (B21)
shows that the parameter 
1 must be further restricted by
the inequality


1 <�
2

3
; (B23)

in order to ensure that �5 is positive. This argument shows
then that we can choose the parameters �a > 0 for a �
f1; 2; 3; 4; 5; 6g and �7 � 0 for any values of the parameters

1 and 
2 in the ranges:


1 <�
2

3
; (B24)

�
5

3
< 
2 < 0: (B25)

We have not yet found the minimal set of restrictions on
the parameters that allows the KST constraint evolution
system to be symmetric hyperbolic for any values of the
characteristic speeds, and for any values of the parameter
�7. We have limited our numerical experiments so far to
the regions of this parameter space where both the princi-
pal and the constraint evolution systems are known to be
symmetric hyperbolic.
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