New boundary conditions are constructed and tested numerically for a general
first-order form of the Einstein evolution system. These conditions prevent
constraint violations from entering the computational domain through timelike
boundaries, allow the simulation of isolated systems by preventing physical
gravitational waves from entering the computational domain, and are designed to
be compatible with the fixed-gauge evolutions used here. These new boundary
conditions are shown to be effective in limiting the growth of constraints in
3D non-linear numerical evolutions of dynamical black-hole spacetimes.Comment: 21 pages, 12 figures, submitted to PR