2,262 research outputs found

    Chandra Imaging and Spectroscopy of the Eastern XA Region of the Cygnus Loop Supernova Remnant

    Full text link
    The XA region of the Cygnus Loop is a bright knot of X-ray emission on the eastern edge of the supernova remnant resulting from the interaction of the supernova blast wave with density enhancements at the edge of a precursor formed cavity. To study the nature and origin of the X-ray emission we use high spatial resolution images from Chandra. Our goal is to probe the density of various spectral extraction regions to form a picture of the cavity wall and characterize the interaction between this supernova and the local interstellar medium. We find that a series of regions along the edge of the X-ray emission appears to trace out the location of the cavity wall. The best fit plasma models result in two temperature component equilibrium models for each region. The low temperature components have densities that are an order of magnitude higher than the high temperature components. The high density plasma may exist in the cavity wall where it equilibrates rapidly and cools efficiently. The low density plasma is interior to the enhancement and heated further by a reverse shock from the wall. Calculations of shock velocities and timescales since shock heating are consistent with this interpretation. Furthermore, we find a bright knot of emission indicative of a discrete interaction of the blast wave with a high density cloud in the cavity wall with a size scale ~0.1 pc. Aside from this, other extractions made interior to the X-ray edge are confused by line of sight projection of various components. Some of these regions show evidence of detecting the cavity wall but their location makes the interpretation difficult. In general, the softer plasmas are well fit at temperatures kT~0.11 keV, with harder plasmas at temperatures of kT~0.27 keV. All regions display consistent metal depletions most notably in N, O, and Ne at an average of 0.54, 0.55, and 0.36 times solar

    The design of a gamma‐ray burst polarimeter

    Get PDF
    The study of the polarization properties of the gamma‐ray bursts is the one remaining unexplored avenue of research which may help to answer some of the fundamental problems regarding the nature of these mysterious objects. We have designed an instrument to measure linear polarization in cosmic gamma‐ray bursts at energies ≳50 keV. Here we describe the design of this instrument, which we call the Gamma‐ray Burst Polarimeter Experiment (GRAPE)

    DIRBE Minus 2MASS: Confirming the CIRB in 40 New Regions at 2.2 and 3.5 Microns

    Full text link
    With the release of the 2MASS All-Sky Point Source Catalog, stellar fluxes from 2MASS are used to remove the contribution due to Galactic stars from the intensity measured by DIRBE in 40 new regions in the North and South Galactic polar caps. After subtracting the interplanetary and Galactic foregrounds, a consistent residual intensity of 14.69 +/- 4.49 kJy/sr at 2.2 microns is found. Allowing for a constant calibration factor between the DIRBE 3.5 microns and the 2MASS 2.2 microns fluxes, a similar analysis leaves a residual intensity of 15.62 +/- 3.34 kJy/sr at 3.5 microns. The intercepts of the DIRBE minus 2MASS correlation at 1.25 microns show more scatter and are a smaller fraction of the foreground, leading to a still weak limit on the CIRB of 8.88 +/- 6.26 kJy/sr (1 sigma).Comment: 25 pages LaTeX, 10 figures, 5 tables; Version accepted by the ApJ. Includes minor changes to the text including further discussion of zodiacal light issues and the allowance for variable stars in computing uncertainties in the stellar contribution to the DIRBE intensitie

    Sweet Kentucky Sue

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/5340/thumbnail.jp

    When The Bells Of Love Are Ringing

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/5065/thumbnail.jp

    Distinct Signatures For Coulomb Blockade and Aharonov-Bohm Interference in Electronic Fabry-Perot Interferometers

    Get PDF
    Two distinct types of magnetoresistance oscillations are observed in two electronic Fabry-Perot interferometers of different sizes in the integer quantum Hall regime. Measuring these oscillations as a function of magnetic field and gate voltages, we observe three signatures that distinguish the two types. The oscillations observed in a 2.0 square micron device are understood to arise from the Coulomb blockade mechanism, and those observed in an 18 square micron device from the Aharonov-Bohm mechanism. This work clarifies, provides ways to distinguish, and demonstrates control over, these distinct physical origins of resistance oscillations seen in electronic Fabry-Perot interferometers.Comment: related papers at http://marcuslab.harvard.ed

    Subaru Spectroscopy and Spectral Modeling of Cygnus A

    Get PDF
    We present high angular resolution (\sim0.5^\prime^\prime) MIR spectra of the powerful radio galaxy, Cygnus A, obtained with the Subaru telescope. The overall shape of the spectra agree with previous high angular resolution MIR observations, as well as previous Spitzer spectra. Our spectra, both on and off nucleus, show a deep silicate absorption feature. The absorption feature can be modeled with a blackbody obscured by cold dust or a clumpy torus. The deep silicate feature is best fit by a simple model of a screened blackbody, suggesting foreground absorption plays a significant, if not dominant role, in shaping the spectrum of Cygnus A. This foreground absorption prevents a clear view of the central engine and surrounding torus, making it difficult to quantify the extent the torus attributes to the obscuration of the central engine, but does not eliminate the need for a torus in Cygnus A

    Thermal Decomposition Kinetics Of AsF5-doped Polyacetylene In Vacuum

    Get PDF
    Electrical conductivity measurements, mass spectra of desorbing species, and ESCA surface analysis are reported for AsF5-doped polyacetylene heated between 50 and 130°C in vacuum. All measurements indicate first-order decomposition kinetics with activation energies between 13 and 20 kcal mole-1. Decomposition leads to the desorption of AsF3 and F2. Metallic arsenic remains in the polyacetylene as a decomposition by-product

    Disentangling AGN and Star Formation in Soft X-rays

    Get PDF
    We have explored the interplay of star formation and AGN activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e. Lx,AGN_{x,AGN} and Lx,SF_{x,SF}) for the remaining 24 Sy2s were estimated from the power law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated Lx,AGN_{x,AGN} and Lx,SF_{x,SF} from Monte Carlo simulations. These simulated luminosities agree with Lx,AGN_{x,AGN} and Lx,SF_{x,SF} derived from Chandra imaging analysis within a 3\sigma\ confidence level. Using the infrared [NeII]12.8\mu m and [OIV]26\mu m lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with Lx,SF_{x,SF} and Lx,AGN_{x,AGN} at the 3\sigma\ level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGN.Comment: accepted for publication in ApJ; 34 pages, 9 tables, 4 figure

    The Cosmic Infrared Background Experiment (CIBER): Instrumentation and First Results

    Get PDF
    Ultraviolet emission from the first generation of stars in the Universe ionized the intergalactic medium in a process which was completed by z similar to 6; the wavelength of these photons has been redshifted by (1 + z) into the near infrared today and can be measured using instruments situated above the Earth's atmosphere. First flying in February 2009, the Cosmic Infrared Background ExpeRiment (CIBER) comprises four instruments housed in a single reusable sounding rocket borne payload. CIBER will measure spatial anisotropies in the extragalactic IR background caused by cosmological structure from the epoch of reionization using two broadband imaging instruments, make a detailed characterization of the spectral shape of the IR background using a low resolution spectrometer, and measure the absolute brightness of the Zodiacal light foreground with a high resolution spectrometer in each of our six science fields. The scientific motivation for CIBER and details of its first and second flight instrumentation will be discussed. First flight results on the color of the zodiacal light around 1 mu m and plans for the future will also be presented
    corecore