31 research outputs found

    Alkoxyallene‐Based LANCA Three‐Component Synthesis of 1,2‐Diketones, Quinoxalines, and Unique Isoindenone Dimers and a Computational Study of the Isoindenone Dimerization

    Get PDF
    A series of β‐alkoxy‐β‐ketoenamides was prepared by the well‐established LANCA three‐component reaction of lithiated 1‐(2‐trimethylsilylethoxy)‐substituted allenes, nitriles, and α,β‐unsaturated carboxylic acids. The α‐tert‐butyl‐substituted compounds were smoothly converted into the expected 1,2‐diketones by treatment with trifluoroacetic acid. A subsequent condensation of the 1,2‐diketones with o‐phenylenediamine provided the desired highly substituted quinoxalines in good overall yield. Surprisingly, the α‐phenyl‐substituted β‐alkoxy‐β‐ketoenamides investigated afford not only the expected 1,2‐diketones, but also pentacyclic compounds with an anti‐tricyclo[4.2.1.12,5]deca‐3,7‐diene‐9,10‐dione core. These interesting products are very likely the result of an isoindenone dimerization which was mechanistically studied with the support of DFT calculations. Under the strongly acidic reaction conditions, a stepwise reaction is likely leading to a protonated isoindenone as reactive intermediate. It may first form a van der Waals complex with a neutral isoindenone before the two regio‐ and diastereoselective ring forming steps occur. Interestingly, two neutral or two protonated isoindenones are also predicted to dimerize giving the observed pentacyclic product

    A Stochastic Step Model of Replicative Senescence Explains ROS Production Rate in Ageing Cell Populations

    Get PDF
    Increases in cellular Reactive Oxygen Species (ROS) concentration with age have been observed repeatedly in mammalian tissues. Concomitant increases in the proportion of replicatively senescent cells in ageing mammalian tissues have also been observed. Populations of mitotic human fibroblasts cultured in vitro, undergoing transition from proliferation competence to replicative senescence are useful models of ageing human tissues. Similar exponential increases in ROS with age have been observed in this model system. Tracking individual cells in dividing populations is difficult, and so the vast majority of observations have been cross-sectional, at the population level, rather than longitudinal observations of individual cells

    Telomere Shortening Impairs Regeneration of the Olfactory Epithelium in Response to Injury but Not Under Homeostatic Conditions

    Get PDF
    Atrophy of the olfactory epithelium (OE) associated with impaired olfaction and dry nose represents one of the most common phenotypes of human aging. Impairment in regeneration of a functional olfactory epithelium can also occur in response to injury due to infection or nasal surgery. These complications occur more frequently in aged patients. Although age is the most unifying risk factor for atrophic changes and functional decline of the olfactory epithelium, little is known about molecular mechanisms that could influence maintenance and repair of the olfactory epithelium. Here, we analyzed the influence of telomere shortening (a basic mechanism of cellular aging) on homeostasis and regenerative reserve in response to chemical induced injury of the OE in late generation telomere knockout mice (G3 mTerc−/−) with short telomeres compared to wild type mice (mTerc+/+) with long telomeres. The study revealed no significant influence of telomere shortening on homeostatic maintenance of the OE during mouse aging. In contrast, the regenerative response to chemical induced injury of the OE was significantly impaired in G3 mTerc−/− mice compared to mTerc+/+ mice. Seven days after chemical induced damage, G3 mTerc−/− mice exhibited significantly enlarged areas of persisting atrophy compared to mTerc+/+ mice (p = 0.031). Telomere dysfunction was associated with impairments in cell proliferation in the regenerating epithelium. Deletion of the cell cycle inhibitor, Cdkn1a (p21) rescued defects in OE regeneration in telomere dysfunctional mice. Together, these data indicate that telomere shortening impairs the regenerative capacity of the OE by impairing cell cycle progression in a p21-dependent manner. These findings could be relevant for the impairment in OE function in elderly people

    Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    Get PDF
    Recent advances in medical X-ray imaging have enabled the development of new techniques capable of assessing not only bone quantity but also structure. This article provides (a) a brief review of the current X-ray methods used for quantitative assessment of the skeleton, (b) data on the levels of radiation exposure associated with these methods and (c) information about radiation safety issues. Radiation doses associated with dual-energy X-ray absorptiometry are very low. However, as with any X-ray imaging technique, each particular examination must always be clinically justified. When an examination is justified, the emphasis must be on dose optimisation of imaging protocols. Dose optimisation is more important for paediatric examinations because children are more vulnerable to radiation than adults. Methods based on multi-detector CT (MDCT) are associated with higher radiation doses. New 3D volumetric hip and spine quantitative computed tomography (QCT) techniques and high-resolution MDCT for evaluation of bone structure deliver doses to patients from 1 to 3 mSv. Low-dose protocols are needed to reduce radiation exposure from these methods and minimise associated health risks
    corecore