1,503 research outputs found

    Power System Dynamic Simulations Using a Parallel Two-Level Schur-Complement Decomposition

    Get PDF
    As the need for faster power system dynamic simulations increases, it is essential to develop new algorithms that exploit parallel computing to accelerate those simulations. This paper proposes a parallel algorithm based on a two-level, Schur-complement-based, domain decomposition method. The two-level partitioning provides high parallelization potential (coarse- and fine-grained). In addition, due to the Schur-complement approach used to update the sub-domain interface variables, the algorithm exhibits high global convergence rate. Finally, it provides significant numerical and computational acceleration. The algorithm is implemented using the shared-memory parallel programming model, targeting inexpensive multi-core machines. Its performance is reported on a real system as well as on a large test system combining transmission and distribution networks

    Hemodynamic and biochemical changes during normothermic and hypothermic sanguinous perfusion of the porcine hepatic graft

    Get PDF
    Using an ex vivo liver sanguinous perfusion system, hemodynamic and biochemical changes of the porcine livers were studied, which were preserved cold (4°C) for 24 hr in University of Wisconsin solution and reperfused with normothermic (37°C) (n=8) or hypothermic (32°C) (n=8) blood for 3 hr. Six more livers were reperfused with normothermic blood (37°C) immediately after procurement as controls. The total hepatic blood flow was adjusted to 1 ml/min/g liver weight, in which hepatic artery and portal vein flows were administered at a 1:2 ratio. In livers stored cold for 24 hr in UW solution and perfused normothermically, a statistically higher hepatic artery resistance was exhibited at 30 an 60 min after reperfusion (P<0.05), and there was lower bile output (P<0.05) at 90 and 120 min as compared to the controls. In livers stored cold for 24 hr in UW solution and perfused hypothermically, as compared to ones perfused normothermically, statistically higher hepatic- artery and portal-vein resistances (P<0.05) were observed throughout the perfusion period and 60 min= after reperfusion, respectively. In addition, bile output and oxygen consumption of these livers were statistically lower than those of ones perfused normothermically (P<O.05). In contrast, chemistries of the perfusat of livers perfused hypothermically were comparable to ones perfused normothermically. Histologic examination of the liver perfused hypothermically demonstrated hepatic arterial and/or portal venous congestion and mild-to-moderate hemorrhage in the portal triads. This study suggests that livers preserved for a prolonged period of time demonstrate a high hepatic arterial resistance shortly after revascularization, and that recipient hypothermia after revascularization may be a risk factor for the development of hepatic arterial thrombosis following liver transplantation. © 1990 by Williams & Wilkins

    Projection effects on pressure profiles: A case study of the Virgo replica

    Get PDF
    An accurate mass calibration of galaxy clusters is a crucial step towards precise constraints on the cosmological parameters σ8 and Ωm from clusters. Cluster masses can be estimated assuming hydrostatic equilibrium, but several physical and observational effects can alter this calculation. One of those are projection effects which are the focus of our present analysis. We present a case study of the simulated Virgo cluster, extracted from the CLONE constrained simulation. We study Virgo pressure and electron density quantities projected along different directions, including along the Milky Way-Virgo axis which mimics our observation direction. We show two main projection effects: the role of the integrated mass along the line of sight (LoS) in each chosen direction, including the presence of massive objects, and the signature of small scale physics in the core of the cluster along these directions

    A new liver perfusion and preservation system for transplantation Research in large animals

    Get PDF
    A kidney perfusion machine, model MOX-100 (Waters Instruments, Ltd, Rochester, MN) was modified to allow continuous perfusion of the portal vein and pulsatile perfusion of the hepatic artery of the liver. Additional apparatus consists of a cooling system, a membrane oxygenator, a filter for foreign bodies, and bubble traps. This system not only allows hypothermic perfusion preservation of the liver graft, but furthermore enables investigation of ex vivo simulation of various circulatory circumstances in which physiological perfusion of the liver is studied. We have used this system to evaluate the viability of liver allografts preserved by cold storage. The liver was placed on the perfusion system and perfused with blood with a hematocrit of approximately 20% and maintained at 37°C for 3 h. The flows of the hepatic artery and portal vein were adjusted to 0.33 mL and 0.67 mL/g of liver tissue, respectively. Parameters of viability consisted of hourly bile output, oxygen consumption, liver enzymes, electrolytes, vascular resistance, and liver histology. This method of liver assessment in large animals will allow the objective evaluation of organ viability for transplantation and thereby improve the outcome of organ transplantation. Furthermore, this pump enables investigation into the pathophysiology of liver ischemia and preservation. © 1990 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted

    Analog of Magnetoelectric Effect in High-Tc Granular Superconductors

    Full text link
    We propose the existence of an electric-field induced nonlinear magnetization in a weakly coupled granular superconductor due to time-parity violation. As the field increases the induced magnetization passes from para- to dia-magnetic behavior. We discuss conditions under which this effect could be experimentally measured in high-temperature superconductors.Comment: REVTEX (epsf style), 1 PS figure; to appear in Europhysics Letter

    GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations

    Get PDF
    Gamma (30–80 Hz) oscillations occur in mammalian electroencephalogram in a manner that indicates cognitive relevance. In vitro models of gamma oscillations demonstrate two forms of oscillation: one occurring transiently and driven by discrete afferent input and the second occurring persistently in response to activation of excitatory metabotropic receptors. The mechanism underlying persistent gamma oscillations has been suggested to involve gap-junctional communication between axons of principal neurons, but the precise relationship between this neuronal activity and the gamma oscillation has remained elusive. Here we demonstrate that gamma oscillations coexist with high-frequency oscillations (>90 Hz). High-frequency oscillations can be generated in the axonal plexus even when it is physically isolated from pyramidal cell bodies. They were enhanced in networks by nonsomatic -aminobutyric acid type A (GABAA) receptor activation, were modulated by perisomatic GABAA receptor-mediated synaptic input to principal cells, and provided the phasic input to interneurons required to generate persistent gamma-frequency oscillations. The data suggest that high-frequency oscillations occurred as a consequence of random activity within the axonal plexus. Interneurons provide a mechanism by which this random activity is both amplified and organized into a coherent network rhythm

    Geometric optics and instability for semi-classical Schrodinger equations

    Full text link
    We prove some instability phenomena for semi-classical (linear or) nonlinear Schrodinger equations. For some perturbations of the data, we show that for very small times, we can neglect the Laplacian, and the mechanism is the same as for the corresponding ordinary differential equation. Our approach allows smaller perturbations of the data, where the instability occurs for times such that the problem cannot be reduced to the study of an o.d.e.Comment: 22 pages. Corollary 1.7 adde

    Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84

    Get PDF
    The localization of chromosome 18 in human interphase nuclei is demonstrated by use of radioactive and nonradioactive in situ hybridization techniques with a DNA clone designated L1.84. This clone represents a distinct subpopulation of the repetitive human alphoid DNA family, located in the centric region of chromosome 18. Under stringent hybridization conditions hybridization of L1.84 is restricted to chromosome 18 and reflects the number of these chromosomes present in the nuclei, namely, two in normal diploid human cells and three in nuclei from cells with trisomy 18. Under conditions of low stringency, cross-hybridization with other subpopulations of the alphoid DNA family occurs in the centromeric regions of the whole chromosome complement, and numerous hybridization sites are detected over interphase nuclei. Detection of chromosome-specific target DNAs by non-radioactive in situ hybridization with appropriate DNA probes cloned from individual chromosomal subregions presents a rapid means of identifying directly numerical or even structural chromosome aberrations in the interphase nucleus. Present limitations and future applications of interphase cytogenetics are discussed

    Resonance-free Region in scattering by a strictly convex obstacle

    Full text link
    We prove the existence of a resonance free region in scattering by a strictly convex obstacle with the Robin boundary condition. More precisely, we show that the scattering resonances lie below a cubic curve which is the same as in the case of the Neumann boundary condition. This generalizes earlier results on cubic poles free regions obtained for the Dirichlet boundary condition.Comment: 29 pages, 2 figure
    corecore