8,983 research outputs found

    Lifetime Adherence to Physical Activity Recommendations and Fall Occurrence in Community-dwelling Older Adults: a Retrospective Cohort Study

    Get PDF
    Falling is a major health concern for community-dwelling older adults. Regular physical activity has been proposed to prevent falls. The aim of this study was to assess whether the achievement of the 2004 UK Department of Health physical activity recommendations over a lifetime had a protective effect against falling in older people. 313 community-dwelling older adults completed a questionnaire about lifetime physical activity and fall occurrence. There were significantly fewer falls in those who had led an active lifestyle compared to those who had not (χ2Yates=4.568, p=0.033), with a lower relative risk of fall occurrence for the active respondents (RR=0.671) compared to the inactive (RR=1.210). Of those who were sufficiently active in their early adulthood, the decade where there was the biggest decrease in remaining active enough was in the 60s. It is concluded that an active lifestyle may have decreased the likelihood of having a fall in older ag

    Self-assembly of a columnar polymeric calcium phosphinate derived from camphene

    Get PDF
    (2,2-Dimethylbicyclo[2.2.1] hept-3-ylmethyl)phosphinic acid (RPO₂H₂), readily prepared from camphene and hypophosphorous acid, formed a polymeric calcium salt [{Ca(RPO₂H) ₂ (RPO₂H₂)(H₂O)}n], with both terminal and triply bridging phosphinate groups, and an overall columnar structure with an inorganic core and a pseudo-close-packed sheath of terpene moieties

    Linearisable third order ordinary differential equations and generalised Sundman transformations

    Full text link
    We calculate in detail the conditions which allow the most general third order ordinary differential equation to be linearised in X'''(T)=0 under the transformation X(T)=F(x,t), dT=G(x,t)dt. Further generalisations are considered.Comment: 33 page

    Modelling the Galactic Magnetic Field on the Plane in 2D

    Full text link
    We present a method for parametric modelling of the physical components of the Galaxy's magnetised interstellar medium, simulating the observables, and mapping out the likelihood space using a Markov Chain Monte-Carlo analysis. We then demonstrate it using total and polarised synchrotron emission data as well as rotation measures of extragalactic sources. With these three datasets, we define and study three components of the magnetic field: the large-scale coherent field, the small-scale isotropic random field, and the ordered field. In this first paper, we use only data along the Galactic plane and test a simple 2D logarithmic spiral model for the magnetic field that includes a compression and a shearing of the random component giving rise to an ordered component. We demonstrate with simulations that the method can indeed constrain multiple parameters yielding measures of, for example, the ratios of the magnetic field components. Though subject to uncertainties in thermal and cosmic ray electron densities and depending on our particular model parametrisation, our preliminary analysis shows that the coherent component is a small fraction of the total magnetic field and that an ordered component comparable in strength to the isotropic random component is required to explain the polarisation fraction of synchrotron emission. We outline further work to extend this type of analysis to study the magnetic spiral arm structure, the details of the turbulence as well as the 3D structure of the magnetic field.Comment: 18 pages, 11 figures, updated to published MNRAS versio

    Analytic Behaviour of Competition among Three Species

    Full text link
    We analyse the classical model of competition between three species studied by May and Leonard ({\it SIAM J Appl Math} \textbf{29} (1975) 243-256) with the approaches of singularity analysis and symmetry analysis to identify values of the parameters for which the system is integrable. We observe some striking relations between critical values arising from the approach of dynamical systems and the singularity and symmetry analyses.Comment: 14 pages, to appear in Journal of Nonlinear Mathematical Physic

    Investigating Biological Matter with Theoretical Nuclear Physics Methods

    Full text link
    The internal dynamics of strongly interacting systems and that of biomolecules such as proteins display several important analogies, despite the huge difference in their characteristic energy and length scales. For example, in all such systems, collective excitations, cooperative transitions and phase transitions emerge as the result of the interplay of strong correlations with quantum or thermal fluctuations. In view of such an observation, some theoretical methods initially developed in the context of theoretical nuclear physics have been adapted to investigate the dynamics of biomolecules. In this talk, we review some of our recent studies performed along this direction. In particular, we discuss how the path integral formulation of the molecular dynamics allows to overcome some of the long-standing problems and limitations which emerge when simulating the protein folding dynamics at the atomistic level of detail.Comment: Prepared for the proceedings of the "XII Meeting on the Problems of Theoretical Nuclear Physics" (Cortona11

    Duality properties of Gorringe-Leach equations

    Full text link
    In the category of motions preserving the angular momentum's direction, Gorringe and Leach exhibited two classes of differential equations having elliptical orbits. After enlarging slightly these classes, we show that they are related by a duality correspondence of the Arnold-Vassiliev type. The specific associated conserved quantities (Laplace-Runge-Lenz vector and Fradkin-Jauch-Hill tensor) are then dual reflections one of the othe
    corecore