3,244 research outputs found

    Massive scalar states localized on a de Sitter brane

    Get PDF
    We consider a brane scenario with a massive scalar field in the five-dimensional bulk. We study the scalar states that are localized on the brane, which is assumed to be de Sitter. These localized scalar modes are massive in general, their effective four-dimensional mass depending on the mass of the five-dimensional scalar field, on the Hubble parameter in the brane and on the coupling between the brane tension and the bulk scalar field. We then introduce a purely four-dimensional approach based on an effective potential for the projection of the scalar field in the brane, and discuss its regime of validity. Finally, we explore the quasi-localized scalar states, which have a non-zero width that quantifies their probability of tunneling from the brane into the bulk.Comment: 14 pages; 5 figure

    Breeding Habits of the Northern Dace

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/119116/1/ecy1929101161.pd

    The Wide-field High-resolution Infrared TElescope (WHITE)

    Full text link
    The Wide-field High-resolution Infrared TElescope (WHITE) will be dedicated in the first years of its life to carrying out a few (well focused in terms of science objectives and time) legacy surveys. WHITE would have an angular resolution of ~0.3'' homogeneous over ~0.7 sq. deg. in the wavelength range 1 - 5 um, which means that we will very efficiently use all the available observational time during night time and day time. Moreover, the deepest observations will be performed by summing up shorter individual frames. We will have a temporal information that can be used to study variable objects. The three key science objectives of WHITE are : 1) A complete survey of the Magellanic Clouds to make a complete census of young stellar objects in the clouds and in the bridge and to study their star formation history and the link with the Milky Way. The interaction of the two clouds with our Galaxy might the closest example of a minor merging event that could be the main driver of galaxy evolution in the last 5 Gyrs. 2) The building of the first sample of dusty supernovae at z<1.2 in the near infrared range (1-5 um) to constrain the equation of state from these obscured objects, study the formation of dust in galaxies and build the first high resolution sample of high redshift galaxies observed in their optical frame 3) A very wide weak lensing survey over that would allow to estimate the equation of state in a way that would favourably compete with space projects.Comment: Invited talk to the 2nd ARENA Conference : "The Astrophysical Science Cases at Dome C" Potsdam 17-21 September, 200

    Bulk gravitons from a cosmological brane

    Full text link
    We investigate the emission of gravitons by a cosmological brane into an Anti de Sitter five-dimensional bulk spacetime. We focus on the distribution of gravitons in the bulk and the associated production of `dark radiation' in this process. In order to evaluate precisely the amount of dark radiation in the late low-energy regime, corresponding to standard cosmology, we study numerically the emission, propagation and bouncing off the brane of bulk gravitons.Comment: 27 pages, 5 figures, minor corrections. Final versio

    Serial reproduction reveals the geometry of visuospatial representations

    Get PDF
    An essential function of the human visual system is to locate objects in space and navigate the environment. Due to limited resources, the visual system achieves this by combining imperfect sensory information with a belief state about locations in a scene, resulting in systematic distortions and biases. These biases can be captured by a Bayesian model in which internal beliefs are expressed in a prior probability distribution over locations in a scene. We introduce a paradigm that enables us to measure these priors by iterating a simple memory task where the response of one participant becomes the stimulus for the next. This approach reveals an unprecedented richness and level of detail in these priors, suggesting a different way to think about biases in spatial memory. A prior distribution on locations in a visual scene can reflect the selective allocation of coding resources to different visual regions during encoding (“efficient encoding”). This selective allocation predicts that locations in the scene will be encoded with variable precision, in contrast to previous work that has assumed fixed encoding precision regardless of location. We demonstrate that perceptual biases covary with variations in discrimination accuracy, a finding that is aligned with simulations of our efficient encoding model but not the traditional fixed encoding view. This work demonstrates the promise of using nonparametric data-driven approaches that combine crowdsourcing with the careful curation of information transmission within social networks to reveal the hidden structure of shared visual representations

    Gauss-Bonnet brane gravity with a confining potential

    Get PDF
    A brane scenario is envisaged in which the mm-dimensional bulk is endowed with a Gauss-Bonnet term and localization of matter on the brane is achieved by means of a confining potential. The resulting Friedmann equations on the brane are modified by various extra terms that may be interpreted as the X-matter, providing a possible phenomenological explanation for the accelerated expansion of the universe. The age of the universe in this scenario is studied and shown to be consistent with the present observational data.Comment: 14 pages, 4 figures, to appear in PR

    Non-linear isocurvature perturbations and non-Gaussianities

    Get PDF
    We study non-linear primordial adiabatic and isocurvature perturbations and their non-Gaussianity. After giving a general formulation in the context of an extended delta N-formalism, we analyse in detail two illustrative examples. The first is a mixed curvaton-inflaton scenario in which fluctuations of both the inflaton and a curvaton (a light isocurvature field during inflation) contribute to the primordial density perturbation. The second example is that of double inflation involving two decoupled massive scalar fields during inflation. In the mixed curvaton-inflaton scenario we find that the bispectrum of primordial isocurvature perturbations may be large and comparable to the bispectrum of adiabatic curvature perturbations.Comment: 24 pages, typos corrected, references adde

    Non-Gaussian isocurvature perturbations in dark radiation

    Full text link
    We study non-Gaussian properties of the isocurvature perturbations in the dark radiation, which consists of the active neutrinos and extra light species, if exist. We first derive expressions for the bispectra of primordial perturbations which are mixtures of curvature and dark radiation isocurvature perturbations. We also discuss CMB bispectra produced in our model and forecast CMB constraints on the nonlinearity parameters based on the Fisher matrix analysis. Some concrete particle physics motivated models are presented in which large isocurvature perturbations in extra light species and/or the neutrino density isocurvature perturbations as well as their non-Gaussianities may be generated. Thus detections of non-Gaussianity in the dark radiation isocurvature perturbation will give us an opportunity to identify the origin of extra light species and lepton asymmetry.Comment: 32 pages, 7 figure

    Primordial gravitational waves in inflationary braneworld

    Get PDF
    We study primordial gravitational waves from inflation in Randall-Sundrum braneworld model. The effect of small change of the Hubble parameter during inflation is investigated using a toy model given by connecting two de Sitter branes. We analyze the power spectrum of final zero-mode gravitons, which is generated from the vacuum fluctuations of both initial Kaluza-Klein modes and zero-mode. The amplitude of fluctuations is confirmed to agree with the four-dimensional one at low energies, whereas it is enhanced due to the normalization factor of zero-mode at high energies. We show that the five-dimensional spectrum can be well approximated by applying a simple mapping to the four-dimensional fluctuation amplitude.Comment: 16 pages, 4 figures, typos correcte

    Thermal leptogenesis in brane world cosmology

    Full text link
    The thermal leptogenesis in brane world cosmology is studied. In brane world cosmology, the expansion law is modified from the four-dimensional standard cosmological one at high temperature regime in the early universe. As a result, the well-known upper bound on the lightest light neutrino mass induced by the condition for the out-of-equilibrium decay of the lightest heavy neutrino, m~1103\tilde{m}_1 \lesssim 10^{-3} eV, can be moderated to be m~1103eV×(M1/Tt)2\tilde{m}_1 \lesssim 10^{-3} {eV} \times (M_1/T_t)^2 in the case of TtM1T_t \leq M_1 with the lightest heavy neutrino mass (M1M_1) and the ``transition temperature'' (TtT_t), at which the modified expansion law in brane world cosmology is smoothly connecting with the standard one. This implies that the degenerate mass spectrum of the light neutrinos can be consistent with the thermal leptogenesis scenario. Furthermore, as recently pointed out, the gravitino problem in supersymmetric case can be solved if the transition temperature is low enough Tt1067T_t \lesssim 10^{6-7} GeV. Therefore, even in the supersymmetric case, thermal leptogenesis scenario can be successfully realized in brane world cosmology.Comment: 9 pages, final versio
    corecore