22 research outputs found

    Characterization of a Deswapped Triple Mutant Bovine Odorant Binding Protein

    Get PDF
    The stability and functionality of GCC-bOBP, a monomeric triple mutant of bovine odorant binding protein, was investigated, in the presence of denaturant and in acidic pH conditions, by both protein and 1-aminoanthracene ligand fluorescence measurements, and compared to that of both bovine and porcine wild type homologues. Complete reversibility of unfolding was observed, though refolding was characterized by hysteresis. Molecular dynamics simulations, performed to detect possible structural changes of the monomeric scaffold related to the presence of the ligand, pointed out the stability of the ÎČ-barrel lipocalin scaffold

    Costs of Inducible Defence along a Resource Gradient

    Get PDF
    In addition to having constitutive defence traits, many organisms also respond to predation by phenotypic plasticity. In order for plasticity to be adaptive, induced defences should incur a benefit to the organism in, for example, decreased risk of predation. However, the production of defence traits may include costs in fitness components such as growth, time to reproduction, or fecundity. To test the hypothesis that the expression of phenotypic plasticity incurs costs, we performed a common garden experiment with a freshwater snail, Radix balthica, a species known to change morphology in the presence of molluscivorous fish. We measured a number of predator-induced morphological and behavioural defence traits in snails that we reared in the presence or absence of chemical cues from fish. Further, we quantified the costs of plasticity in fitness characters related to fecundity and growth. Since plastic responses may be inhibited under limited resource conditions, we reared snails in different densities and thereby levels of competition. Snails exposed to predator cues grew rounder and thicker shells, traits confirmed to be adaptive in environments with fish. Defence traits were consistently expressed independent of density, suggesting strong selection from predatory molluscivorous fish. However, the expression of defence traits resulted in reduced growth rate and fecundity, particularly with limited resources. Our results suggest full defence in predator related traits regardless of resource availability, and costs of defence consequently paid in traits related to fitness

    Modality matters for the expression of inducible defenses: introducing a concept of predator modality

    Get PDF
    Background: Inducible defenses are a common and widespread form of phenotypic plasticity. A fundamental factor driving their evolution is an unpredictable and heterogeneous predation pressure. This heterogeneity is often used synonymously to quantitative changes in predation risk, depending on the abundance and impact of predators. However, differences in `modality', that is, the qualitative aspect of natural selection caused by predators, can also cause heterogeneity. For instance, predators of the small planktonic crustacean Daphnia have been divided into two functional groups of predators: vertebrates and invertebrates. Predators of both groups are known to cause different defenses, yet predators of the same group are considered to cause similar responses. In our study we question that thought and address the issue of how multiple predators affect the expression and evolution of inducible defenses. Results: We exposed D. barbata to chemical cues released by Triops cancriformis and Notonecta glauca, respectively. We found for the first time that two invertebrate predators induce different shapes of the same morphological defensive traits in Daphnia, rather than showing gradual or opposing reaction norms. Additionally, we investigated the adaptive value of those defenses in direct predation trials, pairing each morphotype (non-induced, Triops-induced, Notonecta-induced) against the other two and exposed them to one of the two predators. Interestingly, against Triops, both induced morphotypes offered equal protection. To explain this paradox we introduce a `concept of modality' in multipredator regimes. Our concept categorizes two-predator-prey systems into three major groups (functionally equivalent, functionally inverse and functionally diverse). Furthermore, the concept includes optimal responses and costs of maladaptions of prey phenotypes in environments where both predators co-occur or where they alternate. Conclusion: With D. barbata, we introduce a new multipredator-prey system with a wide array of morphological inducible defenses. Based on a `concept of modality', we give possible explanations how evolution can favor specialized defenses over a general defense. Additionally, our concept not only helps to classify different multipredator-systems, but also stresses the significance of costs of phenotype-environment mismatching in addition to classic `costs of plasticity'. With that, we suggest that `modality' matters as an important factor in understanding and explaining the evolution of inducible defenses

    Top-down effects on antagonistic inducible defense and offense

    Get PDF
    Antagonistic phenotypic plasticity may strongly influence trait evolution in tightly interacting predator-prey pairs as well as the role that trait plasticity plays in community dynamics. Most work on trait plasticity has focused on single predator-prey pairs, but prey must often contend with multiple predators in natural environments. Hence, a better understanding of the evolutionary and ecological significance of phenotypic plasticity requires experiments that examine how multiple predators shape prey trait plasticity. Here, using a simple food chain consisting of a top predator (dragonfly larvae, Aeshna nigroflava), an intermediate predator (salamander larvae, Hynobius retardatus), and frog (Rana pirica) tadpoles as prey, we show that the presence of dragonfly risk cues substantially modifies the intensity of antagonistic morphological plasticity in both amphibians. In the absence of dragonflies, tadpoles produced bulgier bodies in response to salamanders, and salamanders responded to this defense by enlarging their gape size. However, in the presence of dragonfly risk cues, the expression of both antagonistic traits was significantly reduced because tadpoles and salamanders produced phenotypes that are more effective against dragonfly predators. Thus, the reduced antagonism likely emerged, in part, because the benefits of antagonistic trait expression were outweighed by the potential cost of increased vulnerability to dragonfly predation. In addition, our results suggest that when all three species were present, salamander activity levels, which influence the amount of signals required to induce antagonistic traits, were more strongly affected by dragonfly risk cues than were tadpole activity levels. This species-specific difference in activity levels was likely responsible for the reduced tadpole mortality caused by salamanders in the presence vs. absence of dragonfly risk cues. Hence, dragonflies had a positive trait-mediated indirect effect on tadpoles by modifying both the morphological and behavioral traits of salamanders
    corecore