34,848 research outputs found

    Fostering Strong Interactions Between Industry and Academia

    Get PDF
    This paper highlights a number of key issues in the development and execution of joint university-industry engineering projects. Government funding reductions have lead to decreased support of university research and economic forces have driven corporations to reduce or eliminate internal R&D centers. These are two driving factors behind the renewed ties between universities and industries. In developing a plan for a joint research project and when working together towards its solution, both sides need to be cognizant of their respective roles to ensure a successful partnership

    Bunch-Kaufman factorization for real symmetric indefinite banded matrices

    Get PDF
    The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices was rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Space time complexities of the algorithm are given and used to show that the Bunch-Kaufman algorithm is a significant improvement over LU factorization

    The use of Lanczos's method to solve the large generalized symmetric definite eigenvalue problem

    Get PDF
    The generalized eigenvalue problem, Kx = Lambda Mx, is of significant practical importance, especially in structural enginering where it arises as the vibration and buckling problem. A new algorithm, LANZ, based on Lanczos's method is developed. LANZ uses a technique called dynamic shifting to improve the efficiency and reliability of the Lanczos algorithm. A new algorithm for solving the tridiagonal matrices that arise when using Lanczos's method is described. A modification of Parlett and Scott's selective orthogonalization algorithm is proposed. Results from an implementation of LANZ on a Convex C-220 show it to be superior to a subspace iteration code

    Nano-Engineering Defect Structures on Graphene

    Full text link
    We present a new way of nano-engineering graphene using defect domains. These regions have ring structures that depart from the usual honeycomb lattice, though each carbon atom still has three nearest neighbors. A set of stable domain structures is identified using density functional theory (DFT), including blisters, ridges, ribbons, and metacrystals. All such structures are made solely out of carbon; the smallest encompasses just 16 atoms. Blisters, ridges and metacrystals rise up out of the sheet, while ribbons remain flat. In the vicinity of vacancies, the reaction barriers to formation are sufficiently low that such defects could be synthesized through the thermally activated restructuring of coalesced adatoms.Comment: 4 pages, 5 figure

    'Unlicensed' natural killer cells dominate the response to cytomegalovirus infection.

    Get PDF
    Natural killer (NK) cells expressing inhibitory receptors that bind to self major histocompatibility complex (MHC) class I are 'licensed', or rendered functionally more responsive to stimulation, whereas 'unlicensed' NK cells lacking receptors for self MHC class I are hyporesponsive. Here we show that contrary to the licensing hypothesis, unlicensed NK cells were the main mediators of NK cell-mediated control of mouse cytomegalovirus infection in vivo. Depletion of unlicensed NK cells impaired control of viral titers, but depletion of licensed NK cells did not. The transfer of unlicensed NK cells was more protective than was the transfer of licensed NK cells. Signaling by the tyrosine phosphatase SHP-1 limited the proliferation of licensed NK cells but not that of unlicensed NK cells during infection. Thus, unlicensed NK cells are critical for protection against viral infection

    The baseline intracluster entropy profile from gravitational structure formation

    Full text link
    The radial entropy profile of the hot gas in clusters of galaxies tends to follow a power law in radius outside of the cluster core. Here we present a simple formula giving both the normalization and slope for the power-law entropy profiles of clusters that form in the absence of non-gravitational processes such as radiative cooling and subsequent feedback. It is based on seventy-one clusters drawn from four separate cosmological simulations, two using smoothed-particle hydrodynamics (SPH) and two using adaptive-mesh refinement (AMR), and can be used as a baseline for assessing the impact of non-gravitational processes on the intracluster medium outside of cluster cores. All the simulations produce clusters with self-similar structure in which the normalization of the entropy profile scales linearly with cluster temperature, and these profiles are in excellent agreement outside of 0.2 r_200. Because the observed entropy profiles of clusters do not scale linearly with temperature, our models confirm that non-gravitational processes are necessary to break the self-similarity seen in the simulations. However, the core entropy levels found by the two codes used here significantly differ, with the AMR code producing nearly twice as much entropy at the centre of a cluster.Comment: Accepted to MNRAS, 8 pages, 9 figure

    Further studies of single-sided charge-sharing CZT strip detectors

    Get PDF
    We report progress in the study of a thick CZT strip detector module designed to perform gamma-ray spectroscopy and 3-D imaging. We report preliminary performance measurements of 7.5 mm thick single-sided charge-sharing strip detector prototype devices. This design features both row and column contacts on the anode surface. This electron-only approach addresses problems associated with poor hole transport in CZT that limit the thickness and energy range of double-sided strip detectors. This work includes laboratory and simulation studies aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma measurements while minimizing the number and complexity of the electronic readout channels. This is particularly important in space-based coded aperture and Compton telescope instruments that require large area, large volume detector arrays. Such arrays will be required for the NASA Black Hole Finder Probe (BHFP)and Advanced Compton Telescope (ACT). This new design requires an anode pattern with contacts whose dimensions and spacing are roughly the size of the ionization charge cloud. The first prototype devices have 125 μm anode contacts on 225 μm pitch. Our results demonstrate the principle of operation but suggest that even finer anode contact feature sizes will be necessary to achieve the desired performance

    Continued Studies of Single-Sided Charge-Sharing CZT Strip Detectors

    Get PDF
    In this paper, we report progress in the study of thick single-sided charge-sharing cadmium zinc telluride (CZT) strip detector modules designed to perform gammaray spectroscopy and 3-D imaging. We report on continuing laboratory and simulation measurements of prototype detectors with 11×11 unit cells (15×15×7.5mm3 ). We report preliminary measurements of the 3-D spatial resolution. Our studies are aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma measurements while minimizing the number and complexity of the electronic readout channels. This is particularly important in space-based coded aperture and Compton telescope instruments that require large area, large volume detector arrays. Such arrays will be required for the NASA’s Black Hole Finder Probe (BHFP) and Advanced Compton Telescope (ACT). This design requires an anode pattern with contacts whose dimensions and spacing are roughly the size of the ionization charge cloud. The first prototype devices have 125µm anode contacts on 225µm pitch. Our studies conclude that finer pitch contacts will be required to improve imaging efficiency
    • …
    corecore