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Recently, ICASE has begun differentiating between reports with a mathemat-

ical or applied science theme and reports whose main emphasis is some aspect of

computer science by producing the computer science reports with a yellow cover.

The blue cover reports will now emphasize mathematical research. In all other

aspects the reports will remain the same; in particular, they will continue to be

submitted to the appropriate journals or conferences for formal publication.





The Use of Lanczos's Method to Solve the

Large Generalized Symmetric Definite

Eigenvalue Problem

Mark T. Jones*and Merrell L. Patrick *t

Abstract

The generalized eigenvalue problem, Kx = ._Mx, is of signifi-

cant practical importance, especially in structural engineering where

it arises as the vibration and buckling problems. A new algorithm,

LANZ, based on Lanczos's method is developed. LANZ uses a tech-

nique called dynamic shifting to improve the efficiency and reliability

of the Lanczos algorithm. A new algorithm for solving the tridiagonal

matrices that arise when using Lanczos's method is described. A mod-

ification of Parlett and Scott's selective orthogonalization algorithm

is proposed. Results from an implementation of LANZ on a Convex

C-220 show it to be superior to a subspace iteration code.
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1 Introduction

The solution of the symmetric generalized eigenvalue problem,

Kx = _Mx, (1)

where K and M are real, symmetric matrices, and either K or M is positive

semi-definite, is of significant practical importance, especially in structural

engineering as the vibration problem and the buckling problem [BH87]. The

matrices K and M are either banded or sparse. Usually p < < n of the small-

est eigenvalues of Equation 1 are sought, where n is the order of the system.

The method of Lanczos, suitably altered for the generalized eigenvalue prob-

lem, is shown to be useful for the efficient solution of Equation 1. [Lan50]

[NOPEJS7].

A sophisticated algorithm, based on the simple Lanczos algorithm, is

developed in this paper. The algorithm, called LANZ, has been imple-

mented on supercomputer architectures at NASA Langley Research Center

and results from the implementation are discussed. Two applications from

structural engineering are described in Section 2. The properties of the gener-

alized eigenvalue problem and solution methods are given in Section 3. The

simple Lanczos algorithm is presented in Section 4. The use of Lanczos's

method for the generalized eigenvalue problem and the LANZ algorithm

are discussed in Section 5. An execution time cost analysis of LANZ is

developed in Section 6. The solution of the tridiagonal matrices that arise

when using Lanczos's method is considered in Section 7. Methods for solving

the symmetric indefinite linear systems that arise in LANZ are described in

Section 8. In Section 9, the performance of the LANZ algorithm is analyzed

and compared to the performance of subspace iteration, the most prevalent

method for solving this class of problems in structural engineering.



2 Problems of Interest

Two important applications of LANZ which arise in structural engineering

are the vibration problem and the buckling problem. Practical problems

from these applications will be used to test the performance of the program.

In the free vibration problem, the vibration frequencies, w, and mode

shape vectors, x, of a structure are sought. The equation

Kx = JMz, (2)

is solved, where K is the positive definite stiffness matrix and M is the semi-

positive definite mass matrix. The mass matrix, M, can be either diagonal

(in which case it is referred to as a diagonal mass matrix) or can have approx-

imately the same structure as K (in which case it is referred to as a consistent

mass matrix). Because K is positive definite and M is semi-positive definite,

the eigenvalues of 2 are non-negative. When a dynamic load is applied to a

structure, the structure begins to vibrate. If the vibration frequency is close

to a natural frequency of the structure, w, then the resulting resonance can

lead to structural failure. Engineers want to ensure that a structure has no

natural frequencies near the range of frequencies of expected dynamic loads.

Engineers are often interested in a few of the lowest frequencies of the struc-

ture to ensure that these natural frequencies are well above the frequencies

of expected dynamic loads. [Jon89]. In some situations, all the frequencies

in a particular range may be sought. [Kni89].

In the buckling problem, the smallest load at which a structure will buckle

is sought. These buckling loads of a structure, ,k, are the eigenvalues of the

system,

Kx = -AKax, (3)

where K is the positive definite stiffness matrix, I('v is the geometric stiffness

matrix, and x is the buckling mode shape vector [Mah87]. The I(c matrix

has approximately the same structure as K and can be indefinite and singu-

lar. Because Ka is indefinite, the eigenvalues of Equation 3 can be negative,

although in most practical problems they are positive. Equation 3 can have

up to n distinct eigenvalues; although only the smallest eigenvalue is of phys-

ical importance since any load greater than the smallest buckling load will

cause buckling [Jon89]. Designers may, however, be interested in the six to

ten lowest eigenvalues in order to observe the spacing of the buckling loads.
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If the lowest buckling loads are greatly separated from other buckling loads,

the designer may seek to change the structure in order to cause the lowest

buckling loads to become closer to the other buckling loads of the structure.

[Kni89]. Because the Ka matrix can be indefinite and singular, the buckling

problem is more difficult to solve numerically than the vibration problem.
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3 The Generalized Eigenvalue Problem

3.1 Properties

Equation 1 yields n eigenvalues if and only if the rank of M is equal to n,

which may not be the case in the problems under consideration [GL83]. In

fact, if M is rank deficient, then the number of eigenvalues of Equation 1

may be finite, empty, or infinite [GL83]. In practical problems, however, the

set of eigenvalues is finite and non-empty. When K and )if are symmetric

and one or both of them is positive definite, the eigenvalues of Equation 1

are real (without sacrificing generality, it will be assumed that M is positive

definite). An orthogonal matrix, R, exists such that

R TMR = diag(fl_) = D 2, (4)

where the fl_ are the eigenvalues of M and are therefore positive real. If M

is expanded to RD2R 7, then Equation 1 becomes

(K- AM)x = (K- ARDDRT)x. (5)

Equation 5 can be rearranged to become

(g - AM)x = (RD( D -_ R T K RD -1 - M)D RT )x. (6)

Taking the determinant of each side yields

det(K- AM) = (det(R))2(det(D))2det(P- M), (7)

where P = D-_RTKRD -1. Because R is orthogonal det(R) = 1. Dd(D) is

the product of the eigenvalues of M, which are all positive real. Therefore,

the roots of det(K- AM) are those of det(P- AI). Because P is a symmetric

matrix, its eigenvalues are all real and therefore those of Equation 1 are all

real [Wi165].

When K is positive definite and M is positive semi-definite, as they are in

the vibration problem, the eigenvalues of Equation 1 are all non-negative. To

show that the eigenvalues are non-negative, multiply each side of Equation 1

by x T to get

xT gx = AxT Mx. (8)
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Because K is positive definite, xTKx is positive, and because M is posi-

tive semi-definite, xTMx is non-negative; therefore, $ must be non-negative
[Wi165].

The eigenvectors of Equation 1 satisfy M-orthogonality (xTMy = 0, if x

and y are M-orthogonal). The matrix, P, has a complete set of eigenvectors,

zi, and the same eigenvalues as Equation 1. Thus,

Pzi = _izi, (9)

and,

D -1RTKRD -1 zi = _izi . (10)

Then, the sequence of transformations in Equation 11 show that x = RD-lz,

KRD-lzl = ,_iRDzi = ,_iRD(DRTRD-a)zl = _iM(RD-lzi) (11)

Because the zi are known to be orthogonal,

0 = zTzj = (DRTxl)TDRTxj = xiMxj. (12)

The methods and algorithms discussed in this paper rely on the eigenvalues

being real and the eigenvectors being M-orthogonal. In addition, LANZ

makes use of the property that the eigenvalues in the vibration problem are

non-negative.

3.2 Solution Methods

Several methods for solving the large symmetric generalized eigenvalue prob-

lem exist. A popular method, especially in structural engineering, is sub-

space iteration [Bat82]. Nour-Omid, Parlett and Taylor provide convincing

theoretical and experimental evidence that Lanczos's method is superior to

subspace iteration on a sequential machine [NOPT83]. The parallelization of

subspace iteration was investigated by Mahajan and it remains an open ques-

tion as to whether Lanczos's method will be superior to subspace iteration

on parallel machines [Mah87]. Another solution method for the generalized

eigenvalue problem is a two-level iterative method proposed by Szyld [Szy83].

He uses a combination of the inverse iteration and Rayleigh quotient meth-

ods at the outer level, and an iterative solver for indefinite systems at the

inner level. Szyld assumes, however, that /11 is non-singular, which is not
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always the case for the applications under examination. A promising method

for parallel machines based on the Sturm sequence property is proposed by

Ma [Ma88]. He uses multi-sectioning or hi-sectioning to obtain the eigen-

values, and then uses inverse iteration to recover the eigenvectors. Again,

the assumption is made that M is non-singular. Schwarz proposes a method

which minimizes the Rayleigh quotient by means of the conjugate gradient

method. The method uses a partial Choleski decomposition as a precon-

ditioner to speed convergence [Sch89]. SOR-based methods have also been

proposed for the generalized eigenvalue problem, but these suffer from two

flaws: 1) the methods have difficulty when the eigenvalues are clustered, and

2) the methods require that M be positive definite [Ruh74]. Other meth-

ods have also been proposed [SW82] [Sch74]. Block Lanczos methods have

been developed but are more complicated than the simple Lanczos process.
Block methods are limited in that the user of the method must choose the

size of the blocks [NOC85]. One significant advantage of the block methods

is that they can easily reveal the presence of multiple eigenvalues [GU77].

To the best of the authors' knowledge, no satisfactory method of choosing

this block size to best determine the multiplicity of eigenvalues has been

proposed. The block size is usually chosen to take advantage of a particular

computing architecture [Ruh89].



4 Lanczos s Method

4.1 Execution in Exact Arithmetic

In order to understand Lanczos's method when applied to the generalized

eigenvalue problem, it is first necessary to examine the method when applied

to

Ax = ._x, (13)

where A is an n x n real symmetric matrix. In Lanczos's method, the matrix

A is transformed into a tridiagonal matrix, T, in n steps in exact arithmetic.

However, roundoff errors make the simple use of Lanczos's method as a di-

rect method for tridiagonalizing A impractical [Sim84]. Paige suggests using

Lanczos's method as an iterative method for finding the extremal eigenvalues

of a matrix [Pai71]. At each step, j, of the Lanczos algorithm, a tridiagonal

matrix, Tj, is generated. The extremal eigenvalues of Tj approximate those

of A, and as j grows, the approximations become increasingly good [GL83].

Both Kaniel and Saad have examined the convergence properties of Lanczos

in exact arithmetic [Kan66] [Sa_80]. The convergence results that they de-

rive imply that the speed of convergence of the eigenvalues of the T matrices

to eigenvalues of A depends on the distribution of the eigenvalues of A; if an

extreme eigenvalue of A is well separated from its neighbors, convergence to

this eigenvalue will be fast. However, clustered eigenvalues, or eigenvalues

that are in the middle of the spectrum of A, will not be converged to as

quickly as the extremal eigenvalues.

In Lanczos's method, a series of orthonormal vectors, ql... q,, is gener-

ated which satisfy:

T = QTAQ,

where the vectors q_ are the columns of Q.

multiplied by Q to yield,

QT = AQ, (15)

and the columns on each side are set equal, then

(14)

If each side of Equation 14 is

_j+lqj+l + qiaj + qj-lflj = Aq_. (16)

where the a's and fl's are the diagonal and subdiagonal, respectively, of T,
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the tridiagonal matrix in Equation 17 [GL83].

_1 _2

Tj= fh (17)

Equation 16 can be rearranged to become the three-term recurrence relation

flj+lqj+l = Aqi - qjai - qi-lflj. (18)

From this recurrence relation at step j:

AQj = QiTj + (19)

where rj = qj+l/flj+l and ej is the jth column of the j x j identity ma-

trix [GL83]. These q vectors, also called Lanczos vectors, are the key to the

algorithm. They are generated as shown in Equation 18. That this recur-

rence relation generates a set of Lanczos vectors, ql ... qj, which belong to the

Krylov subspace, x(A, ql, j), can be shown by construction. That these Lanc-

zos vectors are also orthonormal, and therefore span the Krylov subspace,

x(A, ql,j), is shown by induction in [GL83]. If the Lanczos vectors are not

orthonormal, then this three-term recurrence relation does not generate the
correct T matrix.

Two of the major benefits of the simple Lanczos algorithm are: 1) the

structure of the matrix A is not important for the Lanczos algorithm; the only

access to A that the algorithm requires is a routine that returns the product

of A times a vector, and 2) at step j, only two of the Lanczos vectors, qj_l

and qj, are required to be stored in core memory, the rest can be stored in

secondary memory until needed for the computation of the eigenvectors. The

simple Lanczos algorithm is shown in Figure 1 [GL83].

The tridiagonal eigenvalue problem generated by Lanczos's method can
be written in the form

Tjs = Os, (20)

where the 8's are sometimes called Ritz values. The eigenvalues of Tj will

approximate those of A, especially the extremal ones. Approximations to the
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ro = starting vector

81 = IIro II
qo=0

j=l

while(#_# 0)
qj = rj-1/_j
a t = qrAqj

rj = Aqj - ajqj - _jqj-1

_j+l -II rj II
j=j+l

Figure 1: The simple Lanczos algorithm

eigenvectors of A, called Ritz vectors, can be calculated using the equation

Yl = Qjsl, (21)

where yi is the Ritz vector corresponding to si [PNO85]. These Ritz vectors

satisfy: [NOPEJ87]

Ayi = yiO, + rjsi(j). (22)

4.2 Effect of Roundoff Errors

The algorithm and equations in Subsection 4.1 hold only in exact arithmetic;

they degenerate in the presence of roundoff errors, and, therefore, the Lanczos

vectors can no longer be assumed to be orthonormal. When roundoff errors

are taken into account, Equation 19 becomes

AQj = QjTj+ rje_ + Fj, (23)

where Fj is used to represent roundoff error. Then,

IIAy,- y, Oi I1_<_j,+ IIF_II, (24)

can be used to bound the error in the Ritz pair (Oi, Yi). The norm of F can

be bounded by nl/2e IIA II,where, is a constant based on the floating point
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precision of the computer, and flji = fij+l I s,(j) I [PNO85]. The bound on

H F(j) II is small and can be disregarded. The most important factor then

becomes flji. From [Pai71]

I yTqJ+,I= (25)

where ")'is a roundoff term approximately equal to e [[ A [[. From Equation 25,

the conclusion can be drawn that as flji becomes small (and hence the error

in the Ritz pair, (0_, y_), also becomes small), the q vectors lose orthogonality

[Par80]. Equation 25 implies that convergence of a Ritz pair to an eigenpair

of A results in a lack of orthogonality among the Lanczos vectors. More

specifically, significant components of yl, the converged Ritz vector, creep

into subsequent qj's, causing spurious copies of Ritz pairs to be generated by

the Lanczos process.

Several remedies for the loss of orthogonality have been proposed. Paige

suggests full reorthogonalization, in which the current Lanczos vector, qj, is

orthogonalized against all previous Lanczos vectors [PaiT1]. Full reorthogo-

nalization becomes increasingly expensive as j grows. Cullum and Willoughby

advocate a method in which the lack of orthogonality is ignored and sophis-

ticated heuristics are used to detect the eigenvalues that are being sought

among the many spurious eigenvalues that are generated [CW85]. Simon

proposes a scheme called partial reorthogonalization in which estimates for

the orthogonality of the current Lanczos vector, qi, against all previous Lane-

zos vectors are inexpensively computed. Based on the estimates, a small

set of the previous Lanczos vectors are orthogonalized against qj [SimS4].

Partial reorthogonalization maintains semi-orthogonality among the Lanc-

zos vectors. For all q vectors, semi-orthogonality is defined by:

q_q, < ea12 i _ j. (26)

"Semi-orthogonality" among the q vectors guarantees that the T matrix gen-

erated by the Lanczos algorithm executed with roundoff errors will be the

same up to working precision as the T matrix generated using exact arith-

metic [PNO85]. Selective orthogonalization is used by LANZ in an adapted

form to maintain semi-orthogonality among the Lanczos vectors [PS79]. The

strategy of selective reorthogonalization, as proposed by Parlett and Scott,

orthogonalizes the current residual vector, rj, and the last Lanczos vector,

qj-1, at the beginning of each step in the Lanczos algorithm against "good"
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Ritz vectors (more details of how this occurs will be given in Section 5).
"Good" Ritz vectors are those which correspond to Ritz values for which

the value of/?jl is below el/2 [[ A [[. A low _jl value suggests that the Ritz

value is converging and, therefore, from Equation 25, [ YTqj+l ] is increasing.

The value of el/_ II A II is used to ensure that the quantity [ v_qj+_ [ never

rises above el/_. As a result, semi-orthogonality, as defined in Equation 26,
is maintained.
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5 The LANZ Algorithm

5.1 The Spectral Transformation

In order to use Lanczos's method to find the lowest eigenvalues or the eigen-

values closest to some value, a, of Kx = AMx, a transformation of the

problem must be made. The Lanczos algorithm described in Section 4 is

applicable only to Ax = ._x. Two transformations are available when K and

M are symmetric and M is positive semi-definite. Each transformation in

this section will be represented by a capital letter that has no other mean-

ing. Transformation A, proposed by Ericsson and Ruhe, replaces A with

WT(K -- aM)-IW to yield,

WT(K -- aM)-'Wy = vy, (27)

where M = WW T, y = WTx, and A = a + 1/v [ER80]. Transformation B,

suggested by Nour-Omid, Parlett, Ericsson and Jensen, replaces A with (K-

aM)-IM and uses the M-inner product, because the operator is no longer

symmetric [NOPEJ87]. Note that M does not form a true inner product

because M is not positive definite. This semi-inner product is acceptable,

however, because the only situation in this algorithm in which xTMx = O,

for a non-trivial x, is when flj+l = 0, which indicates exact convergence in

the Lanczos algorithm. (Hereafter, the semi-inner product will be referred

to as just an inner product). Equation 1 becomes

(K - aM)-lMx = vx, (28)

where the eigenvalues of the original system can be recovered via

A = a + llv. (29)

Transformation B is a shifted inverted version of Equation 1 by virtue of the

following steps. Substituting Equation 29 in Equation 1 yields

Kx - aMx = 1]vMx. (3o)

Then, solving for x and multiplying by v gives

vx = (K - aM)-IMx. (31)
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1) Choose an initial vector, guess

2) ro = (K- aM)-*Mguess (Purge n(B) from guess)

3) Pl = Mro

4)
5) For j = 1, maximum number of iterations

6)
7)
S)
9)
lo)

12)
13)
14)
15)
16)
17)
18) End

Reorthogonalization phase

qj = rj_l/ j
pJ= pJ/
(K - aM)rj = pj (symmetric indefinite solve)

rj = rj - qj_,/_j

r_ =rj-q_a_

Pj+I = Mrl

=
Compute the eigenvalues of Tj and the corresponding error bounds

Compute any converged Ritz vector

Halt if enough eigenvalues have been found

of Loop

Figure 2: The Lanczos Algorithm Using Transformation B

Transformation B is superior to transformation A in both storage and

operation count requirements [NOPEJ87]. Transformation B requires some

modifications to the original algorithm, including the solution of the system

(K - aM)x = y for z, and the use of the M-inner product. The vector p has

also been added to the original Lanczos algorithm to hold the intermediate

quantity Mrj. In the initialization step, the initial guess vector is multiplied

by B to ensure that ro is contained in r(B), where B = (K- aM)-1M. The

efficient implementation of these operations is described in later sections. The

modified algorithm is shown in Figure 2 [NOPEJ87]. Reorthogonalization in

step 6 is much the same as that described in Section 4, with the exception

that the reorthogonalization is done in the M-inner product [NOPEJ87].

If the matrix M is singular, then n(B) might not be null. The eigen-

vectors of Equation 1 have no components in n(M) (also, n(M) = n(B))
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[NOPEJ87]. In exact arithmetic, if the starting vector, q0, of the Lanczos

process is restricted to r(B), then all subsequent Lanczos vectors will be re-

stricted to r(B), because they are computed by multiplying by B. However,

in finite precision arithmetic, roundoff error allows components of subsequent

Lanczos vectors to be in n(B); therefore, the Ritz vectors calculated from

them will have components in n(B) [NOPEJ87]. Purifying these Lanczos

vectors is an expensive process, but a method exists that instead will in-

expensively purify the calculated Ritz vectors. The vector wi is computed,

where wi is a j + l-length vector whose first j components are calculated as,

(32)

and whose last component is

(33)

Equation 21 then becomes:

yl = Qj+aw_, (34)

where wl has replaced si.

5.2 Transformations for Buckling

Transformations A and B are not applicable to the buckling problem because

KG can be indefinite. Transformation A fails because it requires the Choleski

factorization of Ka. Transformation B fails because it requires the use of a

Kc-inner product which would be an indefinite inner product and introduce

complex values into the calculations. Transformation C, suggested for the

buckling problem in [stes9b], uses the operator (K + alfc)-lK. The trans-

formation (If - aKa) is actually suggested in [Ste89b], but (g + aKa) is

preferred because it yields the correct inertia for the buckling problem (note

that the inertia referred to here is not the inertia of a physical body, it is

the definition of inertia used in Sylvester's inertia theorem relating to the

number of positive, negative, and zero eigenvalues of a matrix). The inertia

of (K + aKc) reveals how many eigenvalues of Equation 3 are less than a.

Transformation C can be derived from Equation 3 by substituting av/(v- 1)
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for A in Equation 3, multiplying each side by (t, - 1), rearranging terms, and

finally, multiplying each side by (K + _rKa) -1 to yield

vx = (K + aKQ)-XKx. (35)

To recover A, use Equation 36.

A = _v/(v - 1). (36)

Transformation C requires that a be non-zero. The factorization of (K +

trKc) and the use of the K-inner product are necessary for transformation
C.

In exact arithmetic, the convergence rate of the Lanczos algorithm is the

same for transformations B and C when tx is fixed (B performs the same

transformation on the spectrum as A). The Kaniel-Page-Saad theory is used

to explain the convergence of eigenvalues when using the Lanczos algorithm

and is now introduced to allow a comparison of the transformations and

to show the effects of moving ¢r on the convergence rate [Saa_0]. Three

definitions that will be useful in this explanation are:

i-!

KJ,= lI (0_ - ,,,.s)l(_J.,- ,,,),
m=l

(37)

"i'i= ' + 2(,,,,- ,,'_+,)l(vi+,- "i.s),
and the Chebyshev polynomial,

(38)

On(z) = 1/2((/+ (z 1 - 1)'/1) " + (z- (z 1 - 1)'/1)'_). (39)

The bound on the difference between an eigenvalue of the Tj matrix, 0i, and

an eigenvalue of the transformed system, t,i, at the jth step of the Lanczos

algorithm is

o <__,,_-o{<_(_,-,,.s)(Kitan,_(x,,ro)lCj_,('y,))D _,> _,+,. (40)

The tan w(xl, ro) is determined by the angle between the eigenvector, xl,

associated with t,i and the starting Lanczos vector, r0. Because the angle be-

tween zi and r0 does not change during the Lanczos algorithm and because

K j does not vary greatly, the term that governs the rate of the convergence

is C_-i(Ti). As j increases, Cj-i(Ti) grows more quickly for large _i than for
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Eigenvalue

26

order

30 A2

I00 A_-I

a--0 a= 10 a--25 a=25.9

¢1 ¢1 ¢, ¢1
0.2199 0.3214 4.2857 42.3442

Figure 3: Effects of transformation on eigenvalue separation

small ¢i (¢_ is a term, [ (v_ - v_+l)/(vi+l - v_,_l) [, obtained from the definition

of 7). The ¢i reflect the separation of individual eigenvalues from their neigh-

bors relative to the remaining width of the spectrum. Transformations are

used to increase ¢i for the desired eigenvalues by transforming the spectrum

such that the desired eigenvalues are well-separated from other eigenvalues.

It can be shown that, if used with the same a, transformations B and C have

the same effect on the $i. However, moving a closer to a desired eigenvalue,

Ai, increases the corresponding ¢i (and therefore speeds convergence of 01 to

Ai). The increase in ¢1 as a is moved closer to Ax is shown in Figure 3. Thus,

as a is moved closer to AI the convergence of 01 to AI is speeded up.

Transformations B and C have the same effect on the convergence rates

of the Lanczos process and C can be used in both the buckling and vibration

problems, so the question arises "Why not use transformation C for both the

buckling and vibration problems?" Although B and C have the same effect

in exact arithmetic, they each yield different v's for the same a. In finite

precision arithmetic, transformation C is inferior to transformation B when

a is small relative to the desired A's. Although each transformation requires

the solution of a linear system and the multiplication of a matrix by a vector,

the distribution of the v's for small a in transformation C leads to large

errors in the computation of the A's. For small a, the v's of transformation
C become close to 1 while the same effect is not seen when transformation

B is used (note that the ¢i's in each case are identical). The v's that result

when using transformation C become increasingly close to 1 as a is moved

from 1.0 to 0.01, whereas the v's that result when using transformation B

show little change (this trend is shown in Figure 4). Because the Lanczos

algorithm consists of the same calculations for each transformation, in finite

precision arithmetic the algorithm computes perturbed values assumed to be

17



Eigen-
va] u e

26

26

30

100

order

A1

A1

As

Ainf

a=l.0

v for

Trans. B

0.04000

a=l.0

y for

Trans. C

1.04000
0.04000 1.04000

1.034480.03448

0.01010 1.01010

a = 0.01

v for

Trans. B

0.03848

a=0.01

v for

Trans. C

1.0003848

0.03848 1.0003848

0.03334 1.0003334

0.01000 1.0001000

Figure 4: Effects of transformation on eigenvalues

of the form, (1 + e)v, instead of an exact v. The effect of this perturbation on

the computed A's is the difference between the two transformations. Recall

that in transformation B, A = a + 1/VB, and that in transformation C,

A = a + a/(vc - 1) (the subscript on v is introduced because the v's are

different in each transformation and these values are being compared). If vc

is solved for in terms of VB, then

vc = avs + 1. (41)

Let SAs and gAc denote the difference between the true A and the A computed

using transformations B and C, respectively. These gA's are expressed in

terms of perturbed v's in the following equations:

A + _)_B = a + 1/(1 + e)vB, (42)

A + SAc = a + a/((1 + e)vc - 1). (43)

If Equation 41 is substituted into Equation 43, then

A+ ZAo= _ + _/(_-B + _-B + 0. (44)

If the true A is subtracted from each side of Equations 42 and 44, then

gAB = l[(vs + evS) - I/VB. (45)

eAc= I/(.B + ,._ + _/_) - 1/._. (46)
Thus, the error in the computed A for transformation C increases sharply

as a decreases. To show the increase in error for transformation C, the
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errors in the two transformations (from Equations 45 and 46) axe plotted in

Figure 5 for A = 10 and e = 0.0001. From this derivation and the graph of

the functions, it is clear that transformation C should be avoided when a is

small compared to the desired A.

From the previous discussion the conclusion can be drawn that trans-

formation B is preferred to C whenever possible. However, as was pointed

out previously, transformation B is not applicable to the buckling problem.

Therefore, a new transformation, D, which transforms the eigenvalues in the

same fashion as transformation B (when a = 0) is introduced. Transforma-

tion D can be used with an indefinite Ka matrix but can only be used when

a is 0. Transformation D is derived from Equation 3 in the following steps

[CW85]: first, substitute 1/u for _ and then multiply each side by K-iv to

yield

ux = K -1Kax; (47)

next, expand the implicit identity matrix in each side as I = c-Tc T, where

K = CC r, let y = CTx, and, finally, multiply each side by C T to yield

vy = C-1KGC-Ty. (48)

The operator for transformation D is C-1KGC -T. This transformation re-

quires the Choleski factorization of K and uses the standard inner product.

The eigenvectors, x, must be recovered via the solution of a triangular linear

system, using the foregoing equation for computing y. When an initial non-

zero guess for a exists, the method used in LANZ for solving the buckling

problem uses transformation C exclusively; when an initial guess for a isn't

available, the method Used begins by using transformation D with a at 0,

and then switches to transformation C when a shift of a is needed (the use

of shifting will be described in the next subsection). Thus, the use of trans-

formation C with small a is avoided, and, yet, the advantage resulting from

shifting is maintained.

5.3 The Use of Shifts

An efficient algorithm for computing several eigenvalues requires that the

shift, a, be moved as closc as possible to the eigenvalues that are being com-

puted. The closer that a is to an eigenvalue being computed, the faster the

convergence to that eigenvalue. Ericcson and Ruhe describe a method for
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Figure 5: Errors in Transformations B and C
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selecting shifts and deciding how many Lanczos steps to take at each shift

[ER80]. The efficiency of the algorithm depends on how well these shifts are

chosen, and how many Lanczos steps are taken at each shift. Normally, the

most expensive step in the Lanczos process is the factorization of (K - _rM),

which must be done once for each shift. But if j becomes large, the calcu-

lation of an eigenvector, Equation 21, can be very expensive. In addition,

many steps could be required to converge to an eigenvalue if the shift is far

away from this eigenvalue, or if the eigenvalue is poorly separated from its

neighbors. The method used by Ericcson and Ruhe first estimates that r

eigenvalues will converge in j steps, where r is calculated based on the fact

that the eigenvalues of Equation 1 are linearly distributed. A cost analysis of

the algorithm is performed, and from this analysis, a determination of how

many steps to take at a shift is made. Their choice of shift depends on the

inertia calculation in the factorization step [ER80].

In the problems from the NASA structures testbed [Ste89a], the distribu-

tion of the eigenvalues is often anything but linear. This distribution makes

the above estimates invalid and requires a different method for deciding how

many steps to take at each shift. Instead of calculating the number of steps

to take for a shift prior to execution, LANZ uses a dynamic criterion to

decide when to stop working on a shift. Later, in Section 6, a cost analy-

sis of the Lanczos algorithm shown in Figure 2 is given. This cost analysis

is part of the basis for the dynamic shifting algorithm. The implementa-

tion of LANZ, however, uses execution timings, rather than a precalculated

cost analysis, because the cost analysis is different for each architecture on

which the implementation is run. These timings let LANZ know how long

each Lanczos step takes and the cost of factorization at a new shift. In

addition to the timing information, the estimated number of steps required

for unconverged eigenvalues to converge is calculated. The step estimate

is computed by tracking the eigenvalues of Tj (and the corresponding error

bounds) throughout the execution of the Lanczos algorithm. The method for

this tracking and computation of eigenvalues is described in Section 7. With

estimates for the number of steps required for eigenvalues to converge and

the time needed for a step (or new factorization) to execute, the decision to

keep working on a shift or choose a new shift can be made efficiently.

The selection of a new shift depends on the information generated dur-

ing the execution of LANZ on previous shifts and on inertia calculations at

previous shifts. The inertia calculations are used to identify any eigenvalues
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that were skipped over in previous steps, including eigenvalues of multiplicity

greater than one. The estimated eigenvalues and their error bounds gener-

ated during the execution of Lanczos enable the selection of a new shiK based

on these estimates (if no eigenvalues were skipped in the previous run). Be-

cause convergence to an eigenvalue is faster if the shift, a, is chosen to be

close to that eigenvalue, LANZ seeks to choose a shift that is near to the

desired unconverged eigenvalue. However, a must not be chosen so close to

an eigenvahe that the system (K - aM)z = y becomes very ill-conditioned.

In the authors' experience, Lanczos's method generates approximations to

all nearby eigenvalues, so that even if an eigenvalue is not converged to, .an

estimate along with an error bound for a nearby eigenvalue is generated. If

the initial Lanczos vector is not deficient in the eigenvector corresponding

to an eigenvalue, and if that eigenvalue is close to a, then the Kaniel-Page-

Saad theory shows that Lanczos's method will generate an estimate to that

eigenvalue in a few steps [Kan66]. In practice, even if the initial Lanczos

vector is deficient in the eigenvector, round-off error will quickly make that

eigenvector a component of the Lanczos vectors [ER80].

When a new shift is chosen, the initial Lanczos vector is chosen to be

a weighted linear combination of the Ritz vectors corresponding to the un-

converged Ritz values of the previous shift, where the weights are chosen as

the inverse of the error bounds of those Ritz values [PS79]. The number of

Ritz vectors chosen is based on the number of eigenvectors still to be found

and the number of Ritz vectors with "reasonable" error bounds. To exam-

ine the effect of using a linear combination of Ritz vectors rather than a

random vector as the initial vector, several structural engineering problems

(both buckling and vibration) were solved using both methods for selecting

an initial vector (for an explanation of the problems used, see Section 9). The

number of steps taken by each method to get the same number of eigenvalues

is given in Figure 6 and from this it appears that using the linear combination

of Ritz vectors is always as good or better than choosing a random vector.

To give the reader a clearer picture of the overall execution flow of LANZ,

a flow chart is shown in Figure 7.

5.4 Selective Orthogonalization

The method used to maintain "semi-orthogonality" among the Lanczos vec-

tors is a modification of selective orthogonalization as proposed by Parlett
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Problem Size Random Linear Combination
Mast n = 1980 19 steps 19 steps

(buckling) fl = 58

Mast n = 1980 10 steps 10 steps

(vibration) fl = 58

(diagonal M)

Mast n- 1'980 11 steps 8 steps

(vibration) fl = 58

(non-diagonal M)

Cylinder n = 7644 3 steps 2 steps

(buckling) fl - 385

Figure 6: Methods for choosing initial vector

and Scott [PS79]. As described in Section 4, the Lanczos vectors do not

lose orthogonality until a Ritz pair converges to an eigenpair of the system.

At this point, significant components of the Ritz vector that have converged

begin to creep into subsequent Lanczos vectors. Selective orthogonalization

monitors the level of orthogonality between converged Ritz vectors and Lanc-

zos vectors. If at step j, the orthogonality level between a converged Ritz

vector and the Lanczos vector qj is above a given threshold (Parlett and Scott

suggest that e1/2 be used), the Ritz vector is purged from both qj and qj-1.

Parlett and Scott use the following derivation to monitor the level of

orthogonality [PS79]. In finite precision arithmetic the Lanczos recurrence
relation is

_j+,qj+, = Bqj - ajqj - _jqj-1 + fi (49)

where B is one of the operators described in Subsection 5.1 and fl represents

the roundoff error. The bound on II II is IIB IIwhere c is a constant

independent of j derived from B. If each side of Equation 49 is multiplied

by yT, where y is a Ritz vector computed from Equation 21, then

yT_j+lqj+l "- yT Bqj - yr ajqj -- yT fljqj_l + yr fi. (50)

Multiply each side of Equation 23 by s to yield

By = Oy + r (51)
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! LANZ selelts a new shift based

on accumulated information

Start with the user's initial shift

or use 0 if none is specified

1 I
Execute the Lanczos algorithm until

1) The desired number of eigenvalues are found,

2) No storage space is left, or

3) LANZ determines a new shift is needed

LANZ examines the converged

and unconverged eigenvalues

along with the inertia counts

to ensure that no eigenvalues

have been missed.

I Not Okay IOkay

IFinished J

Figure 7: Execution flow of LANZ
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where r is not rj and will be discussed below. If the bound for II f, II and

Equation 51 are substituted into Equation 50, Equation 52 results.

&+lyTqj+, = (OyT+ rT _ _jyT)q¢_ _jyTq__,+ c_ IIB II (52)

Parlett and Scott assume that r = qk+lflkl for some k < j, and therefore,
that

[ r Tqj [<_ flkl [ qT+lqj [. (53)

They then state: 1) [ qT+_qj [< e_/2, because semi-orthogonality among the

Lanczos vectors is maintained, and 2) if y is a converged Ritz vector, then

flj_ is less than or equal to e1/2 IIB II. Fact 2 is caused by the definition

of a "good" Lanczos vector given in Section 4. If facts 1 and 2, along with

_.j =1 yWqi [, are substituted into Equation 52, then Equation 54 is derived.

_++,-<(I o - _j Irj + &rj_, +, IIB II+c, IIB II)/&+: (54)

Because c and ]lB 11_re small and not readily available, Parlett and Scott

ignore these terms and derive the following recurrence relation for rj+l:

(55)

The values r0 and 7"1 are initialized to e and whenever y is purged from qj,

rj is reset to e. From this recurrence relation, the conclusion can be drawn

that the Lanczos vectors should be orthogonalized in pairs.

This recurrence relation predicts the actual level of orthogonality very well

in practice with two exceptions. The first problem occurs when calculating

rj+l after y has been computed at step j - 1 and purged from qj-1 and qj. In

this situation, a small increase in Tj+I over rj and rj-1 is expected. However,

a large increase occurs. This increase is caused by the assumption on Parlett

and Scott's part that I q[+_qj I<- el/2, when in fact that equation only holds

when k < j- 1. The quantity, I qT+_qj [, is 1 when k = j-1. Thus,

Equation 55 holds when k < j - 1, but when k = j - 1 Equation 55 becomes:

(56)

The second problem arises when using Equation 34 to compute y. In this

case r = 8y + flj__,_qj + _j__,_Bqj/O assuming y is computed at step j - 1;
therefore,

I rrqj I<_Or_+ _j_,., + _j_,,,_j/O. (57)
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The recurrencerelation usedfor rj+l then becomes:

rj+l < (Io - _j [rj + _j_j_, + ___,, + _j_l.,_j/o)/_j+l. (ss)

If y has been computed at step j - 2, then

[ rTqj [_ OTj q- _j_2,1_ 1/2 q- _j-2,1_j/O, (59)

and, because the second term is very small, the recurrence relation for rj+l

becomes

Tj+I <_ ([ 0- {:Itj [Tj + _jTj-- 1 "3L _j--2,1_j/O)/_j+l. (60)

5.5 Orthogonalization Methods

Selective orthogonalization and partial reorthogonalization are the two best

known orthogonalization methods other than full reorthogonalization. Par-

tial reorthogonalization monitors the orthogonallty of qj and qj+l versus the

other Lanczos vectors. Partial orthogonalization measures the orthogonality

between qj and qk, _jk, via the recurrence relation defined in the following

set of equations [Sim84]:

wk_ = 1 for k = 1,...,j, (61)

wkk-1 = qTqk-, for k = 2, ...,j, (62)

_j+_+,_ = _j+,_,_+l+(_,-_)_,j, + _,_-_ -_,_-_ +qTf,_q[fj (63)

and wjk+l = _Jk+lj for 1 < k < j. (64)

Simon has stated that the theoretical relationship between partial reorthogo-

nalization and selective orthogonalization is not known [Sim84]. The follow-

ing discussion explains the relationship between the two methods. If yT on

the left side of Equation 50 is expanded to r rS i Qj, and the resulting equation

is divided by _j+l, the right side becomes rj+_,_, yielding

T T (6_)si Qj qj+l = rj+_,i

From the recurrence relation for partial reorthogonalization, the product

QTqj+_ is the vector _j+i,k, where k runs from 1 to j. Thus the relation-
ship between the _'s and the r's is governed by

sTtaj+l,k = rj+l,k, where k = 1,...,j. (66)
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This relationship in Equation 66 has also been observed in numerical exper-

iments run by the authors. When a Ritz vector, yl, is purged from qj+l and

therefore vj+l,i becomes small, the wi+l,k's for which the values of si,_ are the

largest decrease significantly.
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6 Execution-Time Cost Analysis

An analysis of the execution-time cost of the Lanczos algorithm when using

transformation B is given in Appendix A. Because the costs for the other

transformations are almost identical their cost will not be analyzed in this

section. The analysis has two purposes: 1) to allow the computation of the

tradeoff point between re-starting the Lanczos algorithm at a different shift

and continuing with the current shift, and, 2) to allow analysis of performance

on parallel and vector/parallel machines. Throughout the analysis, only the

cost of floating point operations is included. The assumption is made for

this analysis that the matrices have a band structure and that the Bunch-

Kaufman method (or an LDL T decomposition) is used for the solution of

the linear systems. In order to simplify the analysis, the assumption is made

that the bandwidth of K is greater than or equal to the bandwidth of M. This

assumption has no effect on the analysis other than to avoid making some of

the operation costs conditional on which matrix has the larger bandwidth.

Much of this analysis does not take into account "end conditions," such as
those that arise near the end of a factorization when less work needs to be

done than in the middle of a factorization. Thus, some of the expressions are

necessarily approximations.

Several observations regarding the shift tradeoff can be made from the

cost analysis: 1) the single most expensive step in the algorithm is the fac-

torization phase (2B) which is O(ng_), 2) the cost of the reorthogonalization

phase increases as j increases because of the increasing number of "good"

Ritz vectors to orthogonalize against, 3) the cost of computing a converged

Ritz vector is based on j_ and therefore increases rapidly as j increases, and

4) the cost of the rest of the operations in the program loop is not affected by

growth in j (with exception of step 15 but this step is not costly enough to

consider). To illustrate how the costs of the four operation groups per Lanc-

zos step change, the number of floating point operations per step is plotted

against j, the number of Lanczos steps, in Figure 8. The costs in the Fig-

ure 8 are from an actual LANZ run during which a new shift was selected

beginning at step 22. These costs, of course, will differ for each problem.

From the cost analysis and this graph it can be seen that a tradeoff exists

between the benefits of a taking a new shift (smaller reorthogonalization and

eigenvector computation cost as well as accelerated convergence to desired

eigenvalues) and the benefit of continuing work on the current shift (avoiding
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Figure 8: Operation costs plotted against Lanczos step number

the cost of refactorization).

The LANZ implementation uses actual timings of the various steps dur-

ing the current run to analyze the tradeoff, rather than substituting values

for the cost of various operations for the machine being used. The use of

timings is simpler to implement and makes the code more portable.
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7 Solution of the system Ts = Os

The size, j, of the tridiagonal system, Ts = 08, generated by the Lanczos

algorithm is 1 at step 1 and increases by 1 at each Lanczos step. The size

of T is usually very small compared to the size of the original problem, n.

Therefore, the time used to solve the tridiagonal system does not greatly

affect the sequential execution time of the LANZ algorithm. However, if the

rest of the algorithm is parallelized, the solution of the tridiagonal system

could well become a large factor in the parallel execution time. Parlett

and Nour-Omid have proposed a method of tracking a small group of the

eigenvalues of the T matrices as they are produced by the Lanczos algorithm.

An inexpensive by-product of their method is the error bounds for the 0i's

[PNO85]. Their algorithm monitors the outermost O's whose error bounds,

flj_, indicate that they will converge in the next 2 or 3 steps; it _tually

monitors 8 eigenvalues at a time. There are two phases: 1) the previous

O's and their error bounds are updated and any new O's are detected, and

2) converged O's are detected and removed from the data structure. This

algorithm is not suitable for use by LANZ for 3 reasons: 1) it is not easily

parallelizable, 2) it does not track an eigenvalue for many steps to get a

convergence rate estimate, and 3) in tests run by the authors, it often failed.

The authors have developed a new solution method that is: 1) inherently

parallel, 2) tracks all the eigenvalues of T from step to step, and 3) has been

used successfully with LANZ to solve real structures problems. The method

uses information from step j- 1 to solve for all the eigenvalues and their error

bounds at step j. It uses Cauchy's interlace theorem, shown in Equation 67,

to find ranges for the all the eigenvalues (except the outermost eigenvalues)

of Tj from the eigenvalues of Tj-I.

0{+'< 0{< 0f÷'< o?'< < 0j¢l (67)

Cauchy's interlace theorem states that the eigenvalues of Tj interlace those

of Tj+I [ParS0]. In addition to the interlace property, the error bounds, flji,

from the previous step can be used to provide even smaller ranges for some

eigenvalues. If good error bounds, flji, are not available for the outer eigenval-

ues (the interlace property only gives a starting point for these eigenvalues),

they can be found by extending an interval from the previous extreme eigen-

value. However, a property of the Lanczos algorithm is that the extreme
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eigenvaluesare usually the first to stabilize. The algorithm for the method

just described is given in Figure 9. For simplicity, the algorithm does not

show the code for handling extreme eigenvalues. The algorithm requires two

subroutines, the root finder described below and a function, numless, that

uses spectrum slicing to determine the number of eigenvalues of T# less than

a value. Details of how to efficiently implement these subroutines are given

by Parlett and Nour-Omid [PNO85].

A root finding method, such as bisection or Newton's method, can be

used to find the eigenvalues in the ranges given by the algorithm in Figure 9

[PNO85]. Newton's method is preferred for its fast convergence and because

it generates the jth element in si as a by-product, which allows for the inex-

pensive computation of the error bound for 01 [PNO85]. For safety's sake, the

Newton root finder is protected by a bisection root finder to ensure that New-

ton's method converges to the desired root. If the Ritz vector corresponding

to a particular eigenvalue, 0i, needs to be computed, inverse iteration can be

used to compute si. Because the calculation of every eigenvalue is indepen-

dent, this algorithm is inherently parallel. In order to save time, it may be

beneficial to keep track of which eigenvalues of T have stabilized, as these do

not need to be recomputed. The major difficulty in parallelizing this algo-

rithm appears to be load balancing; it will take different numbers of Newton

iterations to find each eigenvalue, and only occasionally will inverse iteration

be necessary.

The algorithm developed by the authors for solving the tridiagonal system

also tracks the eigenvalues of T# from step to step. This tracking is necessary

for two reasons. First, selective orthogonalization requires the computation of

the Ritz vectors corresponding to the eigenvalues of Tj that become "good"

(as defined in Section 4) at step j. Those Ritz vectors can be used from

step j + 1 until the end of the Lanczos run if the eigenvalues in Tj+I (and

subsequent Ti's) that correspond to the eigenvalues in T# can be identified.

Second, the rate of convergence of a particular eigenvalue is predicted by

tracking its convergence over several steps (the use of the convergence rate

was described in a previous section).
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bounded[i] = 0 , for i = 1, j

doi=l,j-1

if ((2"3ii < Oi - 0i-1) and (2"3ii < 0i+1 - Oi)) then

probe = 0i q" [3ji

less = numless(probe)

if (less = i) then

bounded[i] = i

else/* i and i + 1 are the only values numless will return, if

it returns something else, a grave error has occurred */

bounded[i + 1] = i
endif

endif

enddo

doi = 1, j

if (bounded[i] -- O) then
leftbound = 0i-1

rightbound = 01

newtonroot (leftbound,rightbound,new0i ,newflji)

else if (bound[i] = i) then

1el[bound = Oi -/_ji

rightbound = Oi

newtonroot (leftbound,rightbound,newOi ,newflji)

else if (bound[i] = i- 1) then

leftbound = 01-1

rightbound = 01-1 + 13ji-1

newtonroot(leftbound,rightbound,new01,new/_/jl)

endif

enddo

Figure 9: Tridiagonal Eigenvalue Solver
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8 The Solution of the system (K- aM)x = y

The solution to the possibly indefinite system,

(K - aM)x = y, (68)

is normally the most time-consuming step in the Lanczos algorithm for trans-

formations A, B, and C (unless there are very few non-zero elements in

(K - aM)). Therefore, it makes sense to try to optimize this step of the

algorithm as much as possible. Two approaches can be taken to solving

this system: 1) the use of direct solution methods, or 2) the use of iterative

solution methods. Because the problems under consideration can be very

ill-conditioned, the use of iterative methods has been avoided.

Because this paper is focused on the problem in which K and M are

banded, the discussion in this section is limited to the banded case. In the

vibration problem, because K is positive definite and M is semi-positive

definite, if a __ 0, then the system in Equation 68 is positive definite. In the

buckling problem, because K is positive definite, if a = 0, then only K must

be factored because transformation D is used. Because K and M are always

symmetric, Choleski's method can be used to solve these systems. Choleski's

method is the direct method of choice for this class of banded linear systems

because it is stable and results in no destruction of the bandwidth [BKP76].

Choleski's method is used by LANZ for the vibration problem whenever

a < 0 and in the buckling problem whenever a = 0.

The system in Equation 68 can be indefinite whenever a > 0 in the

vibration problem and may be indefinite in the buckling problem when a

is non-zero. When the system is indefinite, Choleski factorization will fail

because a square root of a negative number will be taken, and the LDL T

decomposition is not stable because the growth of elements in L cannot be

bounded a priori [Wil65]. The methods of choice for factoring a full symmet-

ric indefinite matrix are the Bunch-Kaufman method and Aasen's method

[BG76]. It was believed that both methods, however, would destroy the

structure of a banded system and not be competitive with Gaussian elimi-

nation with partial pivoting, which does not destroy the band structure but

ignores symmetry [BK77]. To address this, the authors have developed a

new method of implementing the Bunch-Kaufman algorithm which is the

method of choice for factoring symmetric indefinite banded systems when
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the systems have only a few negative eigenvalues [JP89]. This is exactly the

case which arises when moving the shift in search of the lowest eigenvalues

of Equation 1 in the vibration problem and is often the case in the buckling

problem as well. The modified algorithm takes full advantage of the sym-

metry of the system, unlike Gaussian elimination, and is therefore faster to

execute and takes less storage space. LANZ uses this algorithm whenever

the system can be indefinite. As an additional benefit, the inertia of the

system can be obtained virtually for free [BK77].

Regardless of which factorization method is used, the system is only fac-

tored once for each _. After the factorization has taken place, each time

the solution to Equation 68 is required, only back and forward triangular

solutions (and a diagonal solution in the Bunch-Kaufman case) must be ex-
ecuted.
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9 Performance Analysis

9.1 Vectorization

From the analysis in Appendix A it appears that vectorizing LANZ would

result in significant speedup of the solution procedure. The LANZ code

was compiled using the Convex Vectorizing Fortran compiler [Cor87]. The

code was executed using double precision on a Convex 220 in both vector

and scalar modes. Seven free vibration problems and five buckling problems

of varying sizes from the NASA Langley testbed were run. The problems

consisted of varying sizes of three different structures. The first structure is a

thin circular, cylindrical shell simply supported along its edges. The buckling

eigenvalues for this structure are closely spaced and present a challenge for

eigensolvers. The actual finite element model only needs to model a small

rectangle of the cylinder to correctly simulate the behavior of the structure.

A plot of the entire cylinder that shows the 15 degree rectangle of the cylinder

that is modeled is given Figure 20 of Appendix A. The two lowest buckling

modes for an axially-compressed cylinder are are also plotted in Figure 21 of

Appendix A. The second structure is a composite (graphite-epoxy) blade-

stiffened panel with a discontinuous center stiffener. The finite element model

for this structure is shown in Figure 22 of Appendix A. The third structure is

a model of a deployable space mast constructed at NASA Langley Research

Center. A picture of the deployable mast along with a plot of the finite

element model is shown in Figure 23 of Appendix A. Descriptions of the first

two structures can be found in [Ste89a]. A description of the deployable mast

can be found in [HWHB86]. In every problem, at least ten eigenpairs were

found. All times in this section are given in seconds. In each problem, n will

refer to the number of equations, and/_ will refer to the semi-bandwidth of

the K matrix. The execution times for the vibration problem with a diagonal

mass matrix are given in Figure 10 where a speedup due to vectorization of

up to 7.83 is shown. Speedups of up to 7.30 for the vibration problem with

a consistent mass matrix are given in Figure 11. For the buckling problem,

speedups of up to 7.79 can be observed in Figure 12. These speedups are

similar to the speedups obtained by other linear algebra applications on the

Convex 220. From these comparisons the conclusion can be drawn that

significant speedup of the solution procedures due to vectorization can be
achieved.
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Problem Size Vector Scalar Speedup

(seconds) (seconds) Factor

Mast n = 1980 2.80 9.28 3.31

_=58

Cylinder n = 216 0.40 0.92 2.30

_=65

Cylinder n = 1824 3.64 20.42 5.61

_= 185
Cylinder 34.77 256.47 7.38

Cylinder

n = 7644

= 385
n = 12054

= 485
75.79 593.48 7.83

Panel n -- 477 1.04 3.69 3.55

/_= 142

Panel n - 2193 6.04 35.49 5.88

/9= 237

Figure 10: Vectorization Results for the Vibration Problem with a Diagonal
Mass Matrix
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Problem Size Vector Scalar Speedup

(seconds) (seconds) Factor

Mast n -- 1980 4.05 10.52 2.60

/_=58

Cylinder n -- 216 0.44 0.96 2.18

fl=65

Cylinder n = 1824 4.69 22.12 4.72

/3= 185
Cylinder n - 7644 39.26 263.73 6.72

fl -- 385

Cylinder n - 12054 82.88 605.30 7.30

/_= 485
Panel n "-- 477 1.74 5.18 2.98

fl = 142

Panel n - 2193 10.61 43.82 4.13

/_ = 237

Figure 11: Vectorization Results for the Vibration Problem with a Consistent

Mass Matrix

Problem

Mast

Cylinder

Cylinder

Cylinder

Size

n = 1980

= 58

n = 216

= 65

n = 1824

/_= 185
n = 7644

/_ = 385

Vector

(seconds)
5.16

0.43

5.18

70.32

Cylinder n -- 12054 150.57

/_= 485

Scalar

(seconds)

14.72

1.01

27.54

510.75

Speedup
Factor

2.85

2.35

5.32

7.26

1172.39 7.79

Figure 12: Vectorization Results for the Buckling Problem
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9.2 Comparison With Subspace Iteration

The claim was made in Section 3 that Lanczos's method is significantly faster

than subspace iteration. The results presented in this section support this

claim. The LANZ code was compared with the EIG2 processor from the

NASA Langley testbed code. The EIG2 processor uses the subspace itera-

tion method [Ste89b]. Both codes were compiled and executed as in Sub-

section 9.1. The same problems that were solved in 9.1 were used for this

comparison in which the the lowest ten eigenvalues were sought. Both pro-

grams were able to find the lowest ten eigenvalues in every case, although

EIG2 took an unusually large number of iterations (over three times the rec-

ommended maximum) to find them in the Mast case for both the buckling

and free vibration problems. The Mast problem has a difficult distribution

of eigenvalues, and the LANZ code makes use of shifting to quickly find the

eigenvalues. Both codes were directed to find the elgenvalues to a relative

accuracy of 10 -4. However, the subspace iteration code used an accuracy

measure which was more lax than that used in the LANZ code. The mea-

sure used in the subspace code,

(A_+I k k+l- A,)/A, , (69)

where k is the iteration number, is only a check to determine whether an

eigenvalue has stabilized relative to itself. In the LANZ code

(IIKv,- O,My, II)/O, (70)

is used to check the relative accuracy of the combination of the eigenvalue

and the eigenvector. Therefore, the LANZ code is at a disadvantage to the

subspace code in this comparison because the eigenpairs are computed to

greater accuracy than in the subspace iteration code.

When the results comparing the two codes are given, two times are re-

ported for LANZ: the processing time required by the code and the total

of the system and processing time required by the code. The two times are

given because the EIG2 processor can only report its execution time as the

total of system and processing time. For the free vibration problem with

a diagonal mass matrix, LANZ is shown in Figure 13 to be about 7 to 14

times faster than subspace iteration. In Figure 14, LANZ is shown to be

about 7 to 26 times faster than subspace iteration for the vibration problem
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Problem Size

Mast n = 1980

fl = 58

Cylinder n = 216

fl-65

Cylinder n = 1824

fl = 185

LANZ

Program

(seconds)

LANZ

Total

(seconds)
2.80 2.85

Subspace Iteration

Total

(seconds)

29.40

0.40 0.41 5.70

3.64 3.73 46.40

Cylinder n - 7644 34.77 35.18 313.80

fl = 385

Cylinder n -- 12054 75.79 76.65 541.50

= 485
Panel n = 477 1.04 1.07 12.30

fl= 142

Panel n = 2193 6.04 6.17 82.30

fl = 237

Ratio

10.32

13.90

12.44

8.92

7.06

11.50

13.34

Figure 13: LANZ vs. Subspace Iteration: Vibration Problem with Diagonal
Mass Matrix
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Problem Size LANZ LANZ Subspace Iteration

Program Total Total

(seconds) (seconds) (seconds)
Mast n - 1980 4.05 4.08 107.60

$-- 58

Cylinder n = 216 0.44 0.44 5.90

,8=65

Cylinder n = 1824 4.69 4.77 51.60

= 185

Cylinder n -- 7644 39.26 3'9.74 357.10

]_ = 385

Cylinder n = 12054 82.88 83.80 585.10

/Y -- 485
Panel n = 477 1.74 1.77 20.50

= 142

Panel n = 2193 10.61 10.72 109.80

= 237

Ratio

26.37

13.41

10.82

8.99

6.98

11.58

10.24

Figure 14: LANZ vs. Subspace Iteration: Vibration Problem with Consis-
tent Mass Matrix
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Problem Size LANZ LANZ Subspace Iteration

Program Total Total

(seconds) (seconds) (seconds)

Mast n = 1980 5.16 5.22 108.00

3=58

Cylinder n -- 216 0.43 0.44 5.60

3=65

Cylinder n = 1824 5.18 5.30 92.80

3-- 185

Cylinder n = 7644 70.32 70.84 523.90

= 385
Cylinder 150.57 151.44 992.30n - 12054

fl = 485

Ratio

20.86

12.73

17.51-

7.40

6.55

Figure 15: LANZ vs. Subspace Iteration: Buckling Problem

with a consistent mass matrix. LANZ is shown to be about 6 to 21 times

faster than subspace iteration for the buckling problem in Figure 15.

LANZ's advantage over subspace iteration appears to be diminishing as

the problem sizes increase because the factorization of the matrices takes a

larger proportion of the time as the matrix size increases. Because each code

could use the same factorization technique, the time spent in factorization

distorts the advantage that LANZ holds over subspace iteration. To more

clearly illustrate the advantage of LANZ over subspace iteration, the time

for factorizing (K - aM) was removed from the results in Figures 13, 14,

and 15. Only the totals of system and processing time were accessible when

computing the modified times. Although the time for triangular linear sys-

tem solutions (the backward, forward, and diagonal linear solutions required

at each step) is still included, the modified times will give the reader a bet-

ter comparison of the time spent in the eigensolving routines. In Figure 16,

LANZ now shows an advantage of up to 47.18 for the vibration problem with

a diagonal mass matrix. For the vibration problem with a consistent mass

matrix, a speedup of up to 31.31 can be observed in Figure 17. A speedup

for the buckling problem of up to 23.64 is shown in Figure 18. In Figures 16

and 17 the LANZ code used only one factorization per problem except for
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Problem Size LANZ SubspaceIteration
(seconds) (seconds)

Mast n = 1980 2.13 121.80

_=58

Cylinder n = 216 0.36 5.30

/_ = 65

Cylinder n = 1824 2.07 39.20

fl= 185

Cylinder 12.65 235.50

Cylinder

n = 7644

fl -- 385

n = 12054

= 485
23.45 362.00

Panel n = 477 0.87 11.50

= 142

Panel n = 2193 3.63 71.70

= 237

Ratio

47.18

14.72

18.94

18.62

15.44

13.22

19.75

Figure 16: Comparison without Factorization: Vibration Problem with a

Diagonal Mass Matrix

the mast problem where two factorizations were required for ten eigenval-

ues to converge. In Figure 18 the LANZ code used only one factorization

per problem to converge to ten eigenvalues except in the two large cylinder

problems and the mast problem, where two factorization were required.

9.3 Performance Benefits of Tracking Eigenvalues

The value of tracking the eigenvalues will now be shown. In Section 7 an

algorithm for tracking and computing the eigenvalues of Tj is given. The code

was run on a Convex C-1 computer for five free vibration problems from the

NASA Langley testbed. Ten eigenvalues were sought for each problem. To

assess the benefits of the tracking algorithm, the code was run with the

tracking algorithm first turned on and then turned off. The M matrices in

this experiment are diagonal; however, the benefits would be even greater

for non-diagonal M matrices. Reductions in execution time of up to 23
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Problem

Mast

Size

n = 1980

fl = 58

Cylinder n = 216

fl=65

Cylinder n = 1824

3 = 185
Cylinder n = 7644

= 385

LANZ

(seconds)

3.36

Subspace Iteration

(seconds)

105.20

0.39 5.50

3.11 43.90

17.21 284.60

Cylinder n = 12054 30.60 407.80

= 485
Panel n = 477 1.57 19.80

= 142

Panel n = 2193 8.18 99.20

= 237

Ratio

31.31

14.10

14.16

16.54

13.33

12.61

12.73

Figure 17: Comparison without Factorization: Vibration Problem with a
Consistent Mass Matrix

Problem

Mast

Cylinder

Size

n = 1980

= 58

n = 216

fl = 65

LANZ

(seconds)

4.50

0.39

Subspace Iteration

(seconds)

106.40

5.20

Cylinder n = 1824 3.64 86.00

3 = 185
Cylinder n -- 7644 25.78 445.90

fl -- 385

Cylinder n = 12054 45.04 808.70

= 485

Ratio

23.64

13.33

23.63

17.30

17.96

Figure 18: Comparison without Factorization: Buckling Problem
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Problem Tracking No Tracking

n = 486 1.440 1.870

/3=16

n -- 476 8.540 8.880

/3=117
n ----1980 25.070 26.210

/3 = 58
n -- 1824 36.990 40.150

/3 -- 239
n = 3548 82.920 88.610

/3 = 259

Figure 19: Execution time with and without tracking

percent are shown in Figure 19. The data in Figure 19 are from a version of

the program that existed prior to changes made in early 1989. The current

version of the program will not work with the tracking algorithm turned off.

The gain in execution time would actually be more marked if the the tracking

algorithm could be turned off in the current version because other parts of

the LANZ algorithm that aren't affected by the tracking algorithm have

been optimized.

9.4 Multiple Eigenvalues

._lthough the test problems from NASA Langley had no low eigenvalues

of multiplicity greater than one, some of the eigenvalues in the Mast case

were very closely clustered. However, the performance of the algorithm with

exact multiple eigenvalues is of interest. Therefore, diagonal test matrices

with multiple eigenvalues were constructed to test whether LANZ would

reveal their presence. In these test cases, the correct number of copies of

each eigenvalue were found by LANZ.
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10 Concluding Remarks

10.1 Conclusions

For the large, generalized eigenvalue problem arising from two structural

engineering applications, the vibration and buckling problems, the LANZ

algorithm was shown to be superior to the subspace iteration method. Re-

sults from several structural engineering problems were given to support this

claim. LANZ is based on the Lanczos algorithm and makes use of spectral

transformations, dynamic movement of a shift, and a modified version of

selective reorthogonalization to quickly converge to desired eigenpairs. The

dynamic shift-moving algorithm used by LANZ was described. The shifting-

moving algorithm is based on a cost analysis of the Lanczos algorithm with

spectral transformations and selective reorthogonalizations. A parallel algo-

rithm for efficiently solving the tridiagonal matrices that arise when using

Lanczos's method was also given.

10.2 Future Work

LANZ has been shown to perform well on vector machines, an important

class of scientific computing machines. These classes show the most promise

for solving very large problems. The next step is to shown that LANZ will

perform well on parallel and vector/parallel computers. An examination of

the LANZ algorithm based on the analysis in Section 6 is the logical first

step in determining a strategy for parallelizing LANZ. A possible next step

is to use the Force programming language to parallelize the code [Jor87].

This language allows parallel loops to be easily expressed and can be used

on several different shared-memory computers. The Force has been shown

to be a good language for parallel linear algebra applications [JPV89]. The

outlined approach would most likely provide a good barometer with which

to assess the performance of LAINZ on parallel machines.
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A Sequential and Vector Cost Analysis

A step-by-step cost analysis for the Lanczos Mgorithm when using trans-

formation B (shown in Figure 2) is given below for sequential and vector
machines.

Definitions:

_K: The semi-bandwidth of the K matrix.

PM: The semi-bandwidth of the M matrix.

n: The number of equations in the system.

daxpy: A double precision vector operation that computes ax+y,

where a is a scalar and x and y are vectors.

Initialization

1.) Choose an initial suess, 9uess

Small cost (O(cn)), but might be larger depending on the

method used for choosing the guess.
2.) ro = (K-*rM)-lMguess (Purifying to)

A.) Formation of the matrix (K - crM)

The matrix is formed from K and M and made available

to the factorization routine.
Sequential: #Mn subtractions and multiplications

Vector. 1 pMn-length daxpy operation

B.) Factorization of (K - aM)

Using Bunch-Kaufman (or LDL r decomposition) as de-
scribed in Section 8
Sequential'. n divisions

O(n#K ) multiplications

O(n#_K/2) multiplications and additions
Vector:. n scalar divisions

n gK-length vector by scalar multiplications

n#K daxpy operations of average length ttg

C.) Forward Solve using factored matrix from B

Sequential'. O(n#g) multiplications and divisions

Vector:. n pK-length daxpy operations

D.) Diagonal Solve using factored matrix from B

Sequential'. 3n multiplications
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3.)

4.)

2n additions

Vector:. 3 n-length daxpy operations

E.) Back Solve using factored matrix from B

Sequential: O(n#_) multiplications and divisions

Vector:. n/_g-length inner products

p1 = Mro

An n x n banded matrix-vector multiplication

Sequential: O((2pK + 1)n) multiplications

O(2_tKn) additions

Vector:. n i_K + l-length inner products

n pK-length daxpy operations

_, = (,-oTp,)'/_

An n-length inner product and a square root

Sequential: n multiplications
n - 1 additions

1 square root

Vector:. 1 n-length inner product

1 square root

Program Loop

5.) For j = 1, maximum number of iterations

6.) Reortho_onalization phase

Orthogonalize rj-1 and qj-1 against "good" Ritz vectors

if necessary (see section on orthogonalization for details).

Steps A and B are done only once and only if reorthog-

onalization is needed. Steps C and E are done for each

Ritz vector that is orthogonalized against rj-1. Steps D

and F are done for each Ritz vector that is orthogonalized

against qj-1.

A.) tl = Mrj_l
Same cost as 3

B.) t2 = Mqj-1

Same cost as 3

c.) 7+= yTt,
Multiplication of an n-length vector by a scalar

Sequential'. n multiplications
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7.)

8.)

9.)

lO.)

11.)

12.)

13.)

Vector:. 1 n-length vector by scalar multiplication

D.) ¢, = yTt2
Same cost as C

E.) rj-1 = rj-1 - "[iYi

Orthogonalize rj against yl

Sequential: n multiplications
n additions

Vector:. 1 n-length daxpy operation

F.) qj-1 = qj-1 - ¢iyl
Same cost as 6E

Orthogonalize rj against yi

Division of an n-length vector by a scalar

Sequential: n multiplications

1 division

Vector:. 1 n-length vector by scalar multiplication

1 division

pj = pj/Zj
Same cost as 7

(g - aM)rj = pj

Same cost as parts C, D, and E of 3

rj = r_ - qj-x/3j

Orthogonalize rj against qj-1
Same cost as 6E

a t = rTpj

Same cost as 4 except no square root is needed

rj = rj - qjaj

Same cost as 10

pj+l = Mrj
Same cost as 3

14.) flj+a = (r_Pj+,) 'D

15.) Compute the eigenvalue of Tj and the corresponding error bounds

A.) Calculate j eigenvalues via Newton's method

Sequential and Vector:. Variable, but very small (O(j2))

B.) Calculate j error bounds,/3ji

Sequential: j multiplications
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16.) Compute any converged Ritz Vectors

Cost per Ritz vector of computing y_

A.) Compute correction factor, wi-- 1/O,(Tjsi)

Sequential: 3j multiplications

2j additions

j multiplications
1 division

Vector:. 3 j-length daxpy operations

1 j-length vector by scalar multiplication

1 division

B.) Compute y_ = Qj+aw_

Sequential: nj multiplications

n(j - 1) additions

Vector:. n j-length inner products

17.) Halt if enough ei_envalues have been found

18.) End of Loop
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Ax/ally-Compressed Cylinder
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Figure 20: Axially-compressed circular cylindrical shell
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Figure 21: Lowest two buckling modes of an axially-compressed cylinder
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Figure 22: Compositeblade-stiffenedpanelwith a discontinousstiffener
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Figure 23: Deployable space mast
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