610 research outputs found

    Testing for redshift evolution of Type Ia supernovae using the strongly lensed PS1-10afx at z=1.4z=1.4

    Full text link
    The light from distant supernovae (SNe) can be magnified through gravitational lensing when a foreground galaxy is located along the line of sight. This line-up allows for detailed studies of SNe at high redshift that otherwise would not be possible. Spectroscopic observations of lensed high-redshift Type Ia supernovae (SNe Ia) are of particular interest since they can be used to test for evolution of their intrinsic properties. The use of SNe Ia for probing the cosmic expansion history has proven to be an extremely powerful method for measuring cosmological parameters. However, if systematic redshift-dependent properties are found, their usefulness for future surveys could be challenged. We investigate whether the spectroscopic properties of the strongly lensed and very distant SN Ia PS1-10afx at z=1.4z=1.4 deviates from the well-studied populations of normal SNe Ia at nearby or intermediate distance. We created median spectra from nearby and intermediate-redshift spectroscopically normal SNe Ia from the literature at -5 and +1 days from light-curve maximum. We then compared these median spectra to those of PS1-10afx. We do not find signs of spectral evolution in PS1-10afx. The observed deviation between PS1-10afx and the median templates are within what is found for SNe at low- and intermediate-redshift. There is a noticeable broad feature centred at λ3500\rm \lambda\sim 3500~\AA{}, which is present only to a lesser extent in individual low and intermediate redshift SN Ia spectra. From a comparison with a recently developed explosion model, we find this feature to be dominated by iron peak elements, in particular, singly ionized cobalt and chromium.Comment: accepted for publication in section 4. Extragalactic astronomy of Astronomy and Astrophysic

    Type Ia supernovae from exploding oxygen-neon white dwarfs

    Get PDF
    The progenitor problem of Type Ia supernovae (SNe Ia) is still unsolved. Most of these events are thought to be explosions of carbon-oxygen (CO) white dwarfs (WDs), but for many of the explosion scenarios, particularly those involving the externally triggered detonation of a sub-Chandrasekhar mass WD (sub-M Ch WD), there is also a possibility of having an oxygen-neon (ONe) WD as progenitor. We simulate detonations of ONe WDs and calculate synthetic observables from these models. The results are compared with detonations in CO WDs of similar mass and observational data of SNe Ia. We perform hydrodynamic explosion simulations of detonations in initially hydrostatic ONe WDs for a range of masses below the Chandrasekhar mass (M Ch), followed by detailed nucleosynthetic postprocessing with a 384-isotope nuclear reaction network. The results are used to calculate synthetic spectra and light curves, which are then compared with observations of SNe Ia. We also perform binary evolution calculations to determine the number of SNe Ia involving ONe WDs relative to the number of other promising progenitor channels. The ejecta structures of our simulated detonations in sub-M Ch ONe WDs are similar to those from CO WDs. There are, however, small systematic deviations in the mass fractions and the ejecta velocities. These lead to spectral features that are systematically less blueshifted. Nevertheless, the synthetic observables of our ONe WD explosions are similar to those obtained from CO models. Our binary evolution calculations show that a significant fraction (3-10%) of potential progenitor systems should contain an ONe WD. The comparison of our ONe models with our CO models of comparable mass (1.2 Msun) shows that the less blueshifted spectral features fit the observations better, although they are too bright for normal SNe Ia.Comment: 6 pages, 5 figure

    Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha

    Full text link
    Stellar evolution models predict the existence of hybrid white dwarfs (WDs) with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with masses ~1.1 Msun, hybrid WDs in a binary system may easily approach the Chandrasekhar mass (MCh) by accretion and give rise to a thermonuclear explosion. Here, we investigate an off-centre deflagration in a near-MCh hybrid WD under the assumption that nuclear burning only occurs in carbon-rich material. Performing hydrodynamics simulations of the explosion and detailed nucleosynthesis post-processing calculations, we find that only 0.014 Msun of material is ejected while the remainder of the mass stays bound. The ejecta consist predominantly of iron-group elements, O, C, Si and S. We also calculate synthetic observables for our model and find reasonable agreement with the faint Type Iax SN 2008ha. This shows for the first time that deflagrations in near-MCh WDs can in principle explain the observed diversity of Type Iax supernovae. Leaving behind a near-MCh bound remnant opens the possibility for recurrent explosions or a subsequent accretion-induced collapse in faint Type Iax SNe, if further accretion episodes occur. From binary population synthesis calculations, we find the rate of hybrid WDs approaching MCh to be on the order of 1 percent of the Galactic SN Ia rate.Comment: 9 pages, 7 figures, 2 tables, accepted for publication in MNRA

    Synthetic NLTE accretion disc spectra for the dwarf nova SS Cyg during an outburst cycle

    Full text link
    Dwarf nova outbursts result from enhanced mass transport through the accretion disc of a cataclysmic variable system. We assess the question of whether these outbursts are caused by an enhanced mass transfer from the late-type main sequence star onto the white dwarf (so-called mass transfer instability model, MTI) or by a thermal instability in the accretion disc (disc instability model, DIM). We compute non-LTE models and spectra of accretion discs in quiescence and outburst and construct spectral time sequences for discs over a complete outburst cycle. We then compare our spectra to published optical spectroscopy of the dwarf nova SS Cygni. In particular, we investigate the hydrogen and helium line profiles that are turning from emission into absorption during the rise to outburst. The evolution of the hydrogen and helium line profiles during the rise to outburst and decline clearly favour the disc-instability model. Our spectral model sequences allow us to distinguish inside-out and outside-in moving heating waves in the disc of SS Cygni, which can be related to symmetric and asymmetric outburst light curves, respectively.Comment: 8 pages, 8 figures; accepted to A&

    Prospect of Studying Hard X- and Gamma-Rays from Type Ia Supernovae

    Full text link
    We perform multi-dimensional, time-dependent radiation transfer simulations for hard X-ray and gamma-ray emissions, following radioactive decays of 56Ni and 56Co, for two-dimensional delayed detonation models of Type Ia supernovae (SNe Ia). The synthetic spectra and light curves are compared with the sensitivities of current and future observatories for an exposure time of 10^6 seconds. The non-detection of the gamma-ray signal from SN 2011fe at 6.4 Mpc by SPI on board INTEGRAL places an upper limit for the mass of 56Ni of \lesssim 1.0 Msun, independently from observations in any other wavelengths. Signals from the newly formed radioactive species have not been convincingly measured yet from any SN Ia, but the future X-ray and gamma-ray missions are expected to deepen the observable horizon to provide the high energy emission data for a significant SN Ia sample. We predict that the hard X-ray detectors on board NuStar (launched in 2012) or ASTRO-H (scheduled for launch in 2014) will reach to SNe Ia at \sim15 Mpc, i.e., one SN every few years. Furthermore, according to the present results, the soft gamma-ray detector on board ASTRO-H will be able to detect the 158 keV line emission up to \sim25 Mpc, i.e., a few SNe Ia per year. Proposed next generation gamma-ray missions, e.g., GRIPS, could reach to SNe Ia at \sim20 - 35 Mpc by MeV observations. Those would provide new diagnostics and strong constraints on explosion models, detecting rather directly the main energy source of supernova light.Comment: 14 pages, 7 figures, 1 table, accepted for publication in Ap

    Effectiveness of physiotherapy and costs in patients with clinical signs of shoulder impingement syndrome: One-year follow-up of a randomized controlled trial

    Full text link
    Objectives: To investigate the effect of manual physiotherapy and exercises compared with exercises alone in patients with shoulder impingement syndrome one year after inclusion. Design: Randomized controlled trial. Subjects: Patients with shoulder impingement of more than 4 weeks. Methods: The intervention group received individualized manual physiotherapy plus individualized exercises; the control group received individualized exercises only. Both groups had 10 treatments over 5 weeks; afterwards all patients continued their exercises for another 7 weeks at home. Primary outcomes were the Shoulder Pain and Disability Index and Patients' Global Impression of Change. The Generic Patient-Specific Scale was used as secondary outcome. Costs were recorded in a log-book. Results: Ninety patients were included in the study and 87 could be analyzed at 1-year follow-up. Both groups showed significant improvements in all outcome measures, but no difference was detected between the groups. Only costs differed significantly in favour of the control group (p=0.03) after 5 weeks. Conclusion: Individualized exercises resulted in lower costs than manual physiotherapy and showed a significant effect on pain and functioning within the whole group after one year. Exercises should therefore be considered as a basic treatment. Due to the progressive improvement that occurred during the follow-up period with individualized exercises further treatments should be delayed for 3 to 4 months

    Three-dimensional simulations of gravitationally confined detonations compared to observations of SN 1991T

    Get PDF
    The gravitationally confined detonation (GCD) model has been proposed as a possible explosion mechanism for Type Ia supernovae in the single-degenerate evolution channel. Driven by buoyancy, a deflagration flame rises in a narrow cone towards the surface. For the most part, the flow of the expanding ashes remains radial, but upon reaching the outer, low-pressure layers of the white dwarf, an additional lateral component develops. This makes the deflagration ashes converge again at the opposite side, where the compression heats fuel and a detonation may be launched. To test the GCD explosion model, we perform a 3D simulation for a model with an ignition spot offset near the upper limit of what is still justifiable, 200 km. This simulation meets our deliberately optimistic detonation criteria and we initiate a detonation. The detonation burns through the white dwarf and leads to its complete disruption. We determine nucleosynthetic yields by post-processing 10^6 tracer particles with a 384 nuclide reaction network and we present multi-band light curves and time-dependent optical spectra. We find that our synthetic observables show a prominent viewing-angle sensitivity in UV and blue bands, which is in tension with observed SNe Ia. The strong dependence on viewing-angle is caused by the asymmetric distribution of the deflagration ashes in the outer ejecta layers. Finally, we perform a comparison of our model to SN 1991T. The overall flux-level of the model is slightly too low and the model predicts pre-maximum light spectral features due to Ca, S, and Si that are too strong. Furthermore, the model chemical abundance stratification qualitatively disagrees with recent abundance tomography results in two key areas: our model lacks low velocity stable Fe and instead has copious amounts of high-velocity 56Ni and stable Fe. We therefore do not find good agreement of the model with SN 1991T.Comment: 11 pages, accepted for publication in Astronomy & Astrophysic

    Strongly lensed SNe Ia in the era of LSST: observing cadence for lens discoveries and time-delay measurements

    Full text link
    The upcoming Large Synoptic Survey Telescope (LSST) will detect many strongly lensed Type Ia supernovae (LSNe Ia) for time-delay cosmography. This will provide an independent and direct way for measuring the Hubble constant H0H_0, which is necessary to address the current 4.4σ4.4 \sigma tension in H0H_0 between the local distance ladder and the early Universe measurements. We present a detailed analysis of different observing strategies for the LSST, and quantify their impact on time-delay measurement between multiple images of LSNe Ia. For this, we produced microlensed mock-LSST light curves for which we estimated the time delay between different images. We find that using only LSST data for time-delay cosmography is not ideal. Instead, we advocate using LSST as a discovery machine for LSNe Ia, enabling time delay measurements from follow-up observations from other instruments in order to increase the number of systems by a factor of 2 to 16 depending on the observing strategy. Furthermore, we find that LSST observing strategies, which provide a good sampling frequency (the mean inter-night gap is around two days) and high cumulative season length (ten seasons with a season length of around 170 days per season), are favored. Rolling cadences subdivide the survey and focus on different parts in different years; these observing strategies trade the number of seasons for better sampling frequency. In our investigation, this leads to half the number of systems in comparison to the best observing strategy. Therefore rolling cadences are disfavored because the gain from the increased sampling frequency cannot compensate for the shortened cumulative season length. We anticipate that the sample of lensed SNe Ia from our preferred LSST cadence strategies with rapid follow-up observations would yield an independent percent-level constraint on H0H_0.Comment: 25 pages, 22 figures; accepted for publication in A&

    The New Zealand Kauri (Agathis Australis) Research Project: A Radiocarbon Dating Intercomparison of Younger Dryas Wood and Implications for IntCal13

    Get PDF
    We describe here the New Zealand kauri (Agathis australis) Younger Dryas (YD) research project, which aims to undertake Δ14C analysis of ~140 decadal floating wood samples spanning the time interval ~13.1–11.7 kyr cal BP. We report 14C intercomparison measurements being undertaken by the carbon dating laboratories at University of Waikato (Wk), University of California at Irvine (UCI), and University of Oxford (OxA). The Wk, UCI, and OxA laboratories show very good agreement with an interlaboratory comparison of 12 successive decadal kauri samples (average offsets from consensus values of –7 to +4 14C yr). A University of Waikato/University of Heidelberg (HD) intercomparison involving measurement of the YD-age Swiss larch tree Ollon505, shows a HD/Wk offset of ~10–20 14C yr (HD younger), and strong evidence that the positioning of the Ollon505 series is incorrect, with a recommendation that the 14C analyses be removed from the IntCal calibration database
    corecore