93 research outputs found

    Efficiently Handling Skew in Outer Joins on Distributed Systems

    Get PDF
    Outer joins are ubiquitous in databases and big data systems. The question of how best to execute outer joins in large parallel systems is particularly challenging as real world datasets are characterized by data skew leading to performance issues. Although skew handling techniques have been extensively studied for inner joins, there is little published work solving the corresponding problem for parallel outer joins. Conventional approaches to this problem such as ones based on hash redistribution often lead to load balancing problems while duplication-based approaches incurs significant overhead in terms of network communication. In this paper, we propose a new algorithm, query with counters (QC), for directly handling skew in outer joins on distributed architectures. We present an efficient implementation of our approach based on the asynchronous partitioned global address space (APGAS) parallel programming model. We evaluate the performance of our approach on a cluster of 192 cores (16 nodes) and datasets of 1 billion tuples with different skew. Experimental results show that our method is scalable and, in cases of high skew, faster than the state-of-the-art

    Design and evaluation of parallel hashing over large-scale data

    Get PDF
    High-performance analytical data processing systems often run on servers with large amounts of memory. A common data structure used in such environment is the hash tables. This paper focuses on investigating efficient parallel hash algorithms for processing large-scale data. Currently, hash tables on distributed architectures are accessed one key at a time by local or remote threads while shared-memory approaches focus on accessing a single table with multiple threads. A relatively straightforward “bulk-operation” approach seems to have been neglected by researchers. In this work, using such a method, we propose a high-level parallel hashing framework, Structured Parallel Hashing, targeting efficiently processing massive data on distributed memory. We present a theoretical analysis of the proposed method and describe the design of our hashing implementations. The evaluation reveals a very interesting result - the proposed straightforward method can vastly outperform distributed hashing methods and can even offer performance comparable with approaches based on shared memory supercomputers which use specialized hardware predicates. Moreover, we characterize the performance of our hash implementations through extensive experiments, thereby allowing system developers to make a more informed choice for their high-performance applications

    A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L.

    Get PDF
    The gilthead sea bream (Sparus aurata L.) is a marine fish of great importance for fisheries and aquaculture. It has also a peculiar sex-determination system, being a protandrous hermaphrodite. Here we report the construction of a first-generation genetic linkage map for S. aurata, based on 204 microsatellite markers. Twenty-six linkage groups (LG) were found. The total map length was 1241.9 cM. The ratio between sex-specific map lengths was 1:1.2 (male:female). Comparison with a preliminary radiation hybrid (RH) map reveals a good concordance, as all markers located in a single LG are located in a single RH group, except for Ad-25 and CId-31. Comparison with the Tetraodon nigroviridis genome revealed a considerable number of evolutionary conserved regions (ECRs) between the two species. The mean size of ECRs was 182 bp (sequence identity 60–90%). Forty-one ECRs have a known chromosomal location in the pufferfish genome. Despite the limited number of anchoring points, significant syntenic relationships were found. The linkage map presented here provides a robust comparative framework for QTL analysis in S. aurata and is a step toward the identification of genetic loci involved both in the determination of economically important traits and in the individual timing of sex reversal

    A hybrid framework for nonlinear dynamic simulations including full-field optical measurements and image decomposition algorithms

    Get PDF
    Innovative designs of transport vehicles need to be validated in order to demonstrate reliability and provide confidence. It is normal practice to study the mechanical response of the structural elements by comparing numerical results obtained from finite element simulation models with results obtained from experiment. In this frame, the use of wholefield optical techniques has been proven successful in the validation of deformation, strain, or vibration modes. The strength of full-field optical techniques is that the entire displacement field can be acquired. The objective of this article is to integrate full-field optical measurement methodologies with state-of-the-art computational simulation techniques for nonlinear transient dynamic events. In this frame, composite car bonnet frame structures of dimensions about 1.8 m 30.8 m are considered. They have been tested in low-velocity mass-drop impact loading with impact energies ranging from 20 to 200 J. In parallel, simulation models of the car bonnet frame have been developed using layered shell elements. The Zernike shape descriptor approach was used to decompose numerical and experimental data into moments for comparison purposes. A very good agreement between numerical and experimental results was observed. Therefore, integration of numerical analysis with full-field optical measurements along with sophisticated comparison techniques can increase design reliability

    Preoperative diagnosis of obscure gastrointestinal bleeding due to a GIST of the jejunum: a case report

    Get PDF
    Gastrointestinal stromal tumours (GISTs) are rare mesenchymal neoplasms affecting the digestive tract or nearby structures within the abdomen. We present a case of a 66-year-old female patient who presented with obscure anemia due to gastrointestinal bleeding and underwent exploratory laparotomy during which a large GIST of the small intestine was discovered. Examining the preoperative results of video capsule endoscopy, computed tomography, and angiography and comparing them with the operative findings we discuss which of these investigations plays the most important role in the detection and localization of GIST. A sort review of the literature is also conducted on these rare mesenchymal tumours

    A gene-based radiation hybrid map of the gilthead sea bream Sparus aurata refines and exploits conserved synteny with Tetraodon nigroviridis

    Get PDF
    Background: Comparative teleost studies are of great interest since they are important in aquaculture and in evolutionary issues. Comparing genomes of fully sequenced model fish species with those of farmed fish species through comparative mapping offers shortcuts for quantitative trait loci (QTL) detections and for studying genome evolution through the identification of regions of conserved synteny in teleosts. Here a comparative mapping study is presented by radiation hybrid (RH) mapping genes of the gilthead sea bream Sparus aurata, a non-model teleost fish of commercial and evolutionary interest, as it represents the worldwide distributed species-rich family of Sparidae.Results: An additional 74 microsatellite markers and 428 gene-based markers appropriate for comparative mapping studies were mapped on the existing RH map of Sparus aurata. The anchoring of the RH map to the genetic linkage map resulted in 24 groups matching the karyotype of Sparus aurata. Homologous sequences to Tetraodon were identified for 301 of the gene-based markers positioned on the RH map of Sparus aurata. Comparison between Sparus aurata RH groups and Tetraodon chromosomes (karyotype of Tetraodon consists of 21 chromosomes) in this study reveals an unambiguous one-to-one relationship suggesting that three Tetraodon chromosomes correspond to six Sparus aurata radiation hybrid groups. The exploitation of this conserved synteny relationship is furthermore demonstrated by in silico mapping of gilthead sea bream expressed sequence tags (EST) that give a significant similarity hit to Tetraodon.Conclusion: The addition of primarily gene-based markers increased substantially the density of the existing RH map and facilitated comparative analysis. The anchoring of this gene-based radiation hybrid map to the genome maps of model species broadened the pool of candidate genes that mainly control growth, disease resistance, sex determination and reversal, reproduction as well as environmental tolerance in this species, all traits of great importance for QTL mapping and marker assisted selection. Furthermore this comparative mapping approach will facilitate to give insights into chromosome evolution and into the genetic make up of the gilthead sea bream

    The dosimetric effects of limited elective nodal irradiation in volumetric modulated arc therapy treatment planning for locally advanced non-small cell lung cancer

    Get PDF
    Objective—Contemporary radiotherapy guidelines for locally advanced non-small cell lung carcinoma (LA-NSCLC) recommend omitting elective nodal irradiation, despite the fact that evidence supporting this came primarily from older reports assessing comprehensive nodal coverage using 3D conformal techniques. Herein, we evaluated the dosimetric implications of the addition of limited elective nodal irradiation (LENI) to standard involved field irradiation (IFI) using volumetric modulated arc therapy (VMAT) planning. Method—Target volumes and organs-at-risk (OARs) were delineated on CT simulation images of 20 patients with LA-NSCLC. Two VMAT plans (IFI and LENI) were generated for each patient. Involved sites were treated to 60 Gy in 30 fractions for both IFI and LENI plans. Adjacent uninvolved nodal regions, considered high risk based on the primary tumor site and extent of nodal involvement, were treated to 51 Gy in 30 fractions in LENI plans using a simultaneous integrated boost approach. Results—All planning objectives for PTVs and OARs were achieved for both IFI and LENI plans. LENI resulted in significantly higher esophagus Dmean (15.3 vs. 22.5 Gy, p \u3c 0.01), spinal cord Dmax (34.9 vs. 42.4 Gy, p = 0.02) and lung Dmean (13.5 vs. 15.9 Gy, p = 0.02), V20 (23.0 vs. 27.9%, p = 0.03), and V5 (52.6 vs. 59.4%, p = 0.02). No differences were observed in heart parameters. On average, only 32.2% of the high-risk nodal volume received an incidental dose of 51 Gy when untargeted in IFI plans. Conclusion—The addition of LENI to VMAT plans for LA-NSCLC is feasible, with only modestly increased doses to OARs and marginal expected increase in associated toxicity

    Fiber Type Conversion by PGC-1α Activates Lysosomal and Autophagosomal Biogenesis in Both Unaffected and Pompe Skeletal Muscle

    Get PDF
    PGC-1α is a transcriptional co-activator that plays a central role in the regulation of energy metabolism. Our interest in this protein was driven by its ability to promote muscle remodeling. Conversion from fast glycolytic to slow oxidative fibers seemed a promising therapeutic approach in Pompe disease, a severe myopathy caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA) which is responsible for the degradation of glycogen. The recently approved enzyme replacement therapy (ERT) has only a partial effect in skeletal muscle. In our Pompe mouse model (KO), the poor muscle response is seen in fast but not in slow muscle and is associated with massive accumulation of autophagic debris and ineffective autophagy. In an attempt to turn the therapy-resistant fibers into fibers amenable to therapy, we made transgenic KO mice expressing PGC-1α in muscle (tgKO). The successful switch from fast to slow fibers prevented the formation of autophagic buildup in the converted fibers, but PGC-1α failed to improve the clearance of glycogen by ERT. This outcome is likely explained by an unexpected dramatic increase in muscle glycogen load to levels much closer to those observed in patients, in particular infants, with the disease. We have also found a remarkable rise in the number of lysosomes and autophagosomes in the tgKO compared to the KO. These data point to the role of PGC-1α in muscle glucose metabolism and its possible role as a master regulator for organelle biogenesis - not only for mitochondria but also for lysosomes and autophagosomes. These findings may have implications for therapy of lysosomal diseases and other disorders with altered autophagy
    • …
    corecore