
Efficiently Handling Skew in Outer Joins on Distributed Systems

Long Cheng∗†, Spyros Kotoulas†, Tomas E Ward∗, Georgios Theodoropoulos‡

∗National University of Ireland Maynooth, Ireland
†IBM Research, Ireland
‡Durham University, UK

{lcheng, tward}@eeng.nuim.ie, spyros.kotoulas@ie.ibm.com, theogeorgios@gmail.com

Abstract—Outer joins are ubiquitous in databases and big
data systems. The question of how best to execute outer
joins in large parallel systems is particularly challenging as
real world datasets are characterized by data skew leading
to performance issues. Although skew handling techniques
have been extensively studied for inner joins, there is little
published work solving the corresponding problem for parallel
outer joins. Conventional approaches to this problem such
as ones based on hash redistribution often lead to load
balancing problems while duplication-based approaches incurs
significant overhead in terms of network communication. In
this paper, we propose a new algorithm, query with counters
(QC), for directly handling skew in outer joins on distributed
architectures. We present an efficient implementation of our
approach based on the asynchronous partitioned global address
space (APGAS) parallel programming model. We evaluate the
performance of our approach on a cluster of 192 cores (16
nodes) and datasets of 1 billion tuples with different skew.
Experimental results show that our method is scalable and, in
cases of high skew, faster than the state-of-the-art.

Keywords-Distributed join; parallel join; outer join; data
skew; X10

I. INTRODUCTION

Data warehouses and the web comprise enormous num-
bers of data elements and the performance of data-intensive
operations on such datasets, for example for query execution,
is crucial for overall system performance. Joins, which
facilitate the combination of records based on a common
key, are particularly costly and efficient implementation of
such operations can have a significant impact in improving
the performance on a wide range of workloads, ranging from
databases to decision support and Big Data analytics.

The study of parallel joins on shared-memory systems has
already achieved significant performance speedups through
improvements in architecture at the hardware-level of mod-
ern processors [1] [2]. Nevertheless, as applications grow
in scale, the associated scalability is bounded by the limit
on the number of threads per processor and the availability
of specialized hardware predicates. Though GPU comput-
ing has become a well-accepted high performance parallel
programming paradigm and there are many reports on im-
plementations of parallel joins [3] [4], as in shared-memory
architectures, when the data reaches very large scale, the

memory and I/O eventually will become the bottleneck. As
a consequence, efficient parallelisation of joins on distributed
memory machines becomes increasingly desirable.

Although distributed join algorithms have been widely
studied [5] [6] [7], there has been relatively little done on the
topic of outer joins a surprising fact given that outer joins
are common in complex queries and widely used such as in
OLAP applications. In contrast to inner joins, outer joins do
not lose any tuples from one (or both) table(s) that do not
match with any tuple in the other table [8]. As a result the
final join contains not only the matched part but also the
non-matched part.

As data skew occurs naturally in various applications, it
is important for practical data systems to perform efficiently
in such contexts. Similarly to inner joins, the conventional
hash-based and duplication-based methods when used for
outer joins precipitates performance degradation when data
skew is encountered as follows: (1) the former method
suffers from poor load balancing; and (2) the latter induces
costly network communication. While many algorithms have
been designed for handling skew for inner joins [9] [10],
little research has been done on outer joins. The reason
for this may be the assumption that inner join techniques
can be simply applied to outer joins [11]. However, as
shown in our evaluations later in this manuscript, applying
such techniques for outer joins directly may lead to poor
performance. Although many systems can convert outer
joins to inner joins [12], providing an opportunity then to use
inner join techniques, this approach necessitates rewriting
mechanisms, which may prove complex and costly. Finally,
methods which have been designed specifically for outer
joins achieve significant performance improvements [11]
over the aforementioned approaches. We will later see
though that these state-of-the-art methods are design vari-
ations of the two conventional approaches described earlier
(namely hash distribution and duplication), making them
only applicable in small-large table outer joins.

In this paper, we propose a new approach which we
have called query with counters (QC), to directly and
efficiently handle data skew in massively parallel outer joins
on distributed systems. We implement our method using

the asynchronous partitioned global address space (APGAS)
model-based programming language - X10 [13]. We conduct
a performance evaluation on an experimental configuration
consisting of 192 cores (16 nodes) and large datasets of 1
billion tuples with a range of different skews. We summarize
the contributions of this paper as below:

- We present a new algorithm (QC) for directly and
efficiently handling skew in parallel outer joins.

- We analyze the performance of two state-of-art tech-
niques: (1) PRPD [10], for handling skew in inner joins;
and (2) DER [11], for optimizing inner implementation
of small-large table outer joins. We find that the compo-
sition of these methods (referred to as PRPD+DER) can
potentially handle skew in large-large table outer joins,
and our experimental results confirm this expectation.

- We compare QC with the PRPD+DER method and
show experimentally that our algorithm outperforms
PRPD+DER in the presence of high skew. Moreover,
the results demonstrate that our method is scalable and
maintains load balanced under skew.

The rest of this paper is organized as follows: In Sec-
tion II, we present background on outer join algorithms
and current techniques. We present our query with counters
algorithm in Section III and its detailed implementation in
Section IV. We provide a quantitative evaluation of our
algorithm in Section V while we conclude the paper and
suggest future work in Section VI.

II. BACKGROUND

In this section, we describe the two conventional outer join
approaches, hash-based and duplication-based outer joins,
and discuss their performance. Then we present some current
techniques that can be used for efficiently handling skew and
improving performance over outer joins. As left outer joins
are the most commonly used outer joins, we simply focus
on this kind of join in the following. The query below shows
a typical left outer join between a relation R with attribute
a and another relation S with attribute b, which is evaluated
by the pattern R 1 S.
select R.x R.a S.y
from R left outer join S on R.a = S.b

A. Conventional Approaches

Distributed outer joins can be broadly composed as a
distribution stage followed by a local join process. This
latter process is well studied and techniques such as the sort-
merge and hash joins are commonly used. We have selected
the hash-join as the local join process for our analysis.
Moreover, to capture the core performance of queries, we
focus on exploiting the parallelism within a single join
operation between two relations R and S. We assume that
both relations are in the form of <key, value> pairs, where
key is the join attribution. Additionally, we also assume that
R is uniformly distributed and S is skewed.

S1n

R11

R1n

Rk

S11 S1k

Sk

Hash Table
Distribution

R1k Rn1

Rnn

Sn1

Snn

SnkRnk

...

...

Figure 1. Hash-based Distributed Outer Joins. The initially partitioned
relation Ri and Si at each node are firstly partitioned and distributed to all
nodes based on the hash values of join attributes, and then the outer joins
are implemented in parallel at each node. The dashed square refers to the
remote computation nodes and objects.

Rk

Hash Table
Sk Duplication

S1R1
... SnRn

= Tk

T1n

R11

R1n

Rk

T11 T1k

Tk

Hash Table Distribution

R1k

... ...
...

T1n

R11

R1n

T11 T1kR1k

... ...

Figure 2. Duplication-based Distributed Outer Joins. The relation R at each
node is simply duplicated to all the nodes and then inner joins commence
in parallel at each node (above). After that, the intermediate results T
implements outer joins with R through the hash-based way (below).

For hash-based approaches, as shown in Figure 1, the
parallel outer joins contain four phases, which is similar to
the case for inner joins: partition, redistribution, build and
probe. In the first phase, the initially partitioned relation Ri

and Si at each node i are partitioned into distinct sets Rik

and Sik respectively, according to the hash values of their
join key attributes. Each of these sets is then distributed to
a corresponding remote node in the second phase. These
two phases can be considered as a redistribution process,
after which, the sequential outer join of local fragments
commence. In the build phase, the relation Sk composed
by the redistribution at each node (namely Sk =

⋃n
i=1 Sik)

will be scanned, and an in-memory hash table will be created
with the join key attributes in the interim. The final probe
phase scans each tuple of the relation Rk (Rk =

⋃n
i=1 Rik)

to check whether the join key is in the hash table. The
combination of tuples from R and S will be output in the
case of a match, otherwise, the output is composed by the
tuple from R and the value null.

The duplication-based distributed outer join approach is
shown in Figure 2. Its implementation includes two main
stages, which makes the approach significantly different
from that for inner joins. (1) The inner join between R and
S. It includes three phases: replication, build and probe.
The replication phase just duplicates (broadcast) Ri at each
node to all other nodes. This means that, after the replication,
the relation Rk will be equal to the full input R, namely,
Rk =

⋃n
i=1 Ri = R. The following two phases are the same

as for sequential inner joins, i.e. local lookups for Sk will
commence once the in-memory hash table of Rk is created,
and consequently outputs the results Tk. (2) The outer join
between R and the intermediate join results Tk. This process
is the same as the hash-based method described above.

B. Performance Issues

Since every step for the two approaches above is im-
plemented in parallel across the computing nodes, and the
number of execution units can be increased by deploying
additional nodes, both distributed schemes show the poten-
tial for scalability in terms of processing massively parallel
outer joins. However there are significant performance issues
with both approaches.

While researchers have shown that implementations of the
hash-based scheme can achieve near linear speed-up on par-
allel systems under ideal balancing conditions [6], when the
data to be processed has significant skew the performance
of such parallel algorithms is dramatically decreased [14].
This performance hit arises from the redistribution of tuples
in relation R and S through the hashing function, and all the
tuples having the same join attribute will be transferred to
the same remote node. When the input is skew, the popular
keys will flood into a small number of nodes and cause
hot spots. These result in performance bottlenecks due to
two reasons: (1) the high time-cost of communication: large
numbers of tuples are transferred to hot spots through the
network, and (2) load imbalance: a large number of hash
table lookups are implemented at hot spots in the probing
phase. Such issues impact system scalability which will be
reduced as employing new nodes cannot yield improvements
- the skew tuples will still be distributed to the same nodes.

In contrast, duplication-based methods can reduce hot
spots, nevertheless, when R is large, the broadcast of every
Ri to all the nodes is time-cost heavy and the building of a
large hash table based on

⋃n
i=1 Ri at each node during the

first stage impacts performance as well due to the associated
memory- and lookup-cost. Further, even if R is small, the
cardinality of the intermediate join results will be large when
S is high skewed, which makes the second stage costly and
consequently decreases the whole performance.

C. Dealing with Skew

As there are no specific methods for handling skew in
single parallel outer join, here, we just discuss two typical

techniques used for inner joins - one implements load
assignment by histograms [15] and the other is the state-
of-art PRPD [10] method. We will apply the later approach
in outer joins and evaluate its performance later.

Histograms: Hassan et al. [15] employ a method based on
distributed histograms, which can be divided into two parts:
(1) histograms for R, S and R 1 S are built at each node,
in either local or global view or both, and (2) based on the
complete knowledge of the distribution and join information
of the relations, a redistribution plan to balance the workload
for each node is formulated.

As the primary innovation in that work is the improvement
of the redistribution plan to process data skew, this method
has the potential to be used for outer joins. While their
experimental results demonstrate that this method is efficient
and scalable in the presence of data skew, there are still
two weak points: (1) histograms are built based on the
redistribution of all the keys of R and S, which leads to
high network communication, and (2) though only the tuples
participating in the join are extracted for redistribution,
which reduces part of the network communication, this
operation is based on the pre-join of the distributed keys,
which incurs a significant time cost.

PRPD: Xu et al. [10] propose an algorithm named PRPD
(partial redistribution & partial duplication) for inner joins.
For a single skew relation S (assuming R is uniformly
distributed), S is partitioned into two parts: (1) a locally-
retained part Sloc, which comprises high skew items and
which is not involved in the redistribution phase, and (2)
the redistributed part Sredis which comprises the tuples with
low frequency of occurrence and is redistributed using a
common hash-based implementation. The relation R is also
divided into two parts: (1) the duplicated part Rdup, which
contain the keys in Sloc, which will be broadcast to all other
nodes, and (2) the redistributed part Rredis - the remaining
part of R that is to be redistributed as normal. After the
duplication and the redistribution operations, the final join
can be composed by Rredis 1 Sredis and Rdup 1 Sloc at
each node.

This method illustrates an efficient way to process the high
skew tuples (keys are highly repetitive). All these tuples of
S are not redistributed at all, instead a small number of
tuples containing the same keys from R are broadcast. The
results for this approach show significant speedup in the
presence of data skew. In fact, PRPD is a hybrid method
combining both the hash-based and duplication-based join
scheme. Therefore, we can simply use the Rredis 1 Sredis

and Rdup 1 Sloc to replace the corresponding inner joins
in the scenarios of outer joins. Even so, we notice that: (1)
this algorithm is based on the assumption that they have
knowledge of the data skew, which requires global statistical
operations for R and S are required initially, and (2) the
cardinality of the intermediate results in Rdup 1 Sloc will
be large because the Sloc here is high skewed, and this will

bring in significant time-costs. We will exam this in our
evaluations in Section V.

D. Outer Joins Optimization

Xu et al. [11] propose another algorithm called DER
(Duplication and Efficient Redistribution), which is the
state-of-the-art method for optimization of outer joins. The
method comprises two stages. (1) They duplicate Ri to all
the nodes and then implement the inner joins. In contrast to
the conventional approach, they record the ids of all non-
matched rows of R at this stage. (2) They do not redistribute
any tuples in the second stage, instead, they just redistribute
the recorded ids according to their hash values and then
simply organize the non-match join results on that basis.
The final output is the union of the inner join results in the
first stage and the non-matched ones in the second stage.

In fact, this method shows an efficient way to extract
non-matched results. Notice that the join in the first stage
of the conventional duplication-based method is a inner
join but not a outer join, the reason is that the outer join
brings either redundant or erroneous non-matched output.
For a two-node system for example, if the output of the
duplicated tuple {1,a} is {1,a,null} on both nodes, there
is no match for this tuple in S and there is a redundant
output. In the meantime, if the {1,a,null} appears only
on one node, there is a match on the other node, output
{1,a,null} will result in error. The conventional approach to
alleviate this problem is by redistributing the intermediate
results. We can also use another, naive, way to solve this
problem by outputting the non-matched results and then
redistribute them. Regardless, DER uses a more ingenious
way, in that each tuple can be indicated by a row-id from the
table R, which is redistributed. Consequently, the network
communication and the workload can be greatly reduced,
and their experimental results demonstrate that the DER
algorithm can achieve significant speedups over competing
methods.

As DER must broadcast Ri, it is designed to work best
for small-large table outer joins. In this scenario, since R
is small, the redistributed part in the second stage will
remain small even when S is skew. This is because DER
only processes the non-matched part, the number of which
is always less than |R| at each node. In contrast with the
PRPD algorithm, the broadcast part Rdup is typically small,
and we expect that integrating DER into PRPD can fix the
skew problem as described for Rdup 1 Sloc previously.
Accordingly this hybrid method can be applied to handle
skew in common large-large outer joins. We refer to this
approach as PRPD+DER and we will exam its performance
in Section V as well. For outer joins implemented directly
by PRPD (namely the part Rdup 1 Sloc is implemented by
the conventional duplication-based outer join method), we
refer to this approach as PRPD+Dup.

S1n

R11

R1n

Rk

Hash Table

S11 S1k

Distribution

Query

R1k Rn1

Rnn

Sn1

Snn

SnkRn1

...

...

Query

Counter

Figure 3. The Query with Counters approach for outer joins. The dashed
square refers to the remote computation nodes and objects.

III. OUR APPROACH

In this section, we first introduce our query with counters
approach and its detailed work flow. Then we analyze how
this scheme can directly and efficiently handle data skew in
outer joins. We also present an account of the advantages
and disadvantages of the approach compared to current
techniques in this domain.

A. The QC Algorithm

Assuming the input relations are R and S, where S is
skew, there are N computing nodes, and before the join
operations the ith node has a subset of both relations Ri and
Si. As shown in Figure 3, our approach has two different
communication patterns - distribution and query, which
occur between local and remote nodes. This distinguishes the
method from the conventional hash-based and duplication-
based outer joins. We divide its detailed work flow into the
following four steps.

R Distribution: The relation R is processed the same
way as the hash-based implementations, in that each Ri

is partitioned into N chunks, and each tuple is assigned
according to the hash value of its key by a hash function
h(k) = k mod N . After that, all the chunks Rij will be
transferred to the jth node.

Push Query Keys: In this phase, we scan each tuple in
the relation S at each node and insert them in a set of local
hash tables Ti (the number of hash tables is N). The tuple
assignment is according to h(k) = k mod N as well, such
that the tuples having the hash value j are put into the jth
hash table Tij . The structure of the hash tables are shown
as Figure 4(a). It supports the 1 → n mappings, such that
tuples with the same keys will be stored in the same bucket.
After that, iterations on each hash table commence and all
keys in each hash table are picked up and kept sequentially
in memory. Finally, we push the keys from the hash table
Tij to the j node, where these keys are called the query keys
of the node j in our approach.

Count Matches and Return Queried Values: In this step,
we first build a local hash table T ′

i with the data structure

...

V111

V112

V113

…

V121

V122

…

… …

V1n1

V1n2

…

K11

K12

K1n

Vr1

Null

Vr3

Null

…

Vrn

Ki1

Ki2

Ki3

Ki4

…

Kin

 Ri

Hash Table

Vn11

Vn12

…

Vn21

Vn22

Vn32

…

… …

Vnn1

Vnn2

…

Kn1

Kn2

Knn

Counter

Figure 4. The data structure used in QC algorithm: (a) the local hash
tables of S, the tuples are distributed to a set of hash tables according to
the hash values of their keys and the tuples with the same keys are inserted
into the same bucket (left), and (b) the query keys of a remote node and
its corresponding returned values (right).

<key, (value, counter)> at each node, in which the key and
value are the received tuples from the first phase while the
counter is an integer and initialized as 0. After that, we look
up each of the received query keys in T ′

i and output either
a matched value or Null. All these values are also kept
sequentially as well as the corresponding query keys, and we
called them returned values, because we push these values
back to the nodes where the query keys originally come
from after finishing the lookups. The detailed process can be
seen in Figure 4(b). (1) If a match exists, the returned value
will be the matched value, meanwhile, we also increase the
corresponding counter by one. (2) If there is no match in
Ri, the returned value will be set to Null.

Result Lookup: After receiving sets of returned values
from remote nodes, we can formulate the final join results.
We divide this process into two kinds of lookup: (1) matched
result lookup, through scanning the received values at each
node. Take a node i for example, for the returned values
from jth node, we first check whether the value is null. If
the value is null, we continue scanning the next value. If it
is not, it means that there is a match between R and S. The
reason is that each query key is extracted from S, and a non-
null returned value means that this key exists in R as well.
Therefore, we look up the corresponding query key in the
corresponding hash table Tij and output the join results. (2)
non-matched result lookup, through checking whether the
counter is 0. We iterate all the keys in the hash table T ′ and
check the corresponding counter. For each counter = 0,
we output the non-matched result of the corresponding key
directly. The reasons are: (1) the query is based on the hash-
based implementation, and (2) the key in R with counter =
0 means that this key has never been matched with the query
keys, also means it has no match in S. The join operation
ends with the output of all the results.

B. Handling Data Skew

Though S is skewed, we do not transfer any tuples of this
relation in our framework. Instead, we just transfer the keys

of S. More exactly, we only distribute the unique keys of
S on the basis of 1→ n structure of hash tables Ti.

Assuming that there exist skew tuples, which have the
same key ks, and appear ns (large number) times in the
relation S. Using the conventional hash-based method, all
these ns tuples will be transferred to the h(ks)-th node,
which results a hot spot both in communication and the
following lookup operations. By comparison, our method
efficiently addresses this problem in two aspects: (1) each
node will receive only one key (or maximum N keys if
these tuples are distributed on the N nodes), and (2) each
query key is treated as the same in the following look up
operations.

C. Comparison with other Approaches

In addition to efficient handling of data skew, compared
with the conventional approaches, our scheme still has two
other advantages: (1) network communication can be highly
reduced, because we only transferred the unique keys of S,
and their corresponding returned values, and (2) computation
can be decreased when S is high skew, because (a) though
we have two lookup operations on Ti and T ′

i , the hash tables
in Ti will be very small, (b) skew tuples will be looked up
only once instead of checking all of them, and (c) lookup
operations for the tuples that are not participating in the join
results are removed by just checking whether the returned
value is null or not.

Taking a higher level comparison with the histograms [15]
and the two PRPD-based [10] methods as described in
Section II, there are two other advantages to our approach
in aspect of handling skew: (1) we do not need any
global knowledge of the relations in the presence of skew
while [15] and [10] require a global statistic to quantify the
skew, and (2) our approach does not involve redundancy
of join (or lookup) operations while the other two have,
because each node in our method is just query what I need,
while [15] and [10] have broadcast behavior, such that some
nodes may receive some tuples what they do not really need.
Furthermore, by using a local query counter, we can directly
identify the non-matched results while [15] and [10] needs
more complex pre-distribution or redistribution operations.
In the meantime, although the DER [11] algorithm has
done specified optimization for the inner implementation of
outer joins, it still needs to redistribute the row-ids. All of
these highlight that our approach is more straightforward on
processing outer joins.

In our method, we have to build local hash tables for Si at
each node, which could be time-costly. Additionally, when
the skew is low, the number of query keys will be large
as well, and the two-sided communication will decrease the
performance. We assess the balance of these advantages and
disadvantages through evaluation with real-world datasets
and an appropriate parallel implementation in Section V.

IV. IMPLEMENTATION

We present a detailed implementation of the QC algorithm
using the X10 framework. We compare our method with
the conventional hash-based algorithm as well as the two
PRPD-based algorithms. The latter two do not provide any
code-level information, therefore, we have also implemented
the PRPD+Dup and PRPD+DER algorithms in X10.

A. An overview of X10

X10 [13] is a new multi-paradigm programming language
developed by IBM. It supports the asynchronous partitioned
global address space (APGAS) model and is specifically
designed to increase programmer productivity, while being
amenable to programming shared memory and distributed
memory supercomputers. It uses the concepts of place
and activity as the kernel notions to exploit parallelism
in the available hardware. A place is a logical abstraction
of the underlying heterogeneous processing element in the
hardware, such as cores in a multi-core architecture, GPUs,
or a whole physical machine. Activities are light-weight
threads that run on places. X10 schedules activities on places
to best utilize the available parallelism. The number of places
is constant through the life-time of an X10 program and
is initialized at program startup. Activities on the other
hand can be forked at program execution time. Forking an
activity can be blocking, wherein the parent returns after
the forked activity completes execution, or non-blocking,
wherein the parent returns instantaneously, after forking an
activity. Furthermore, these activities can be forked locally
or on a remote place.

X10 provides a data structure called distributed array
(DistArray) for programming parallel algorithms. One
or more elements in the DistArray can be mapped
to a single place using the concept of points [13]. The
following three X10 primitives are critical in understanding
the pseudocode given in the following sections:

- at(p) S: this construct executes statement S at a
specific place p. The current activity is blocked until S
finishes executing on p.

- async S: a child activity is forked by this construct.
The current activity returns immediately (non-blocking)
after forking S.

- finish S: this construct is used to block the current
activity and wait for all activities forked by S to
terminate.

There are a number of advantages using the X10 language,
and in turn the APGAS model, to implement our algorithm:
(1) flexible and efficient scheduling. APGAS, like PGAS,
separates tasks from the underlying concurrency model,
thereby allowing one to implement an efficient schedul-
ing strategy irrespective of the number of tasks forked
using async; (2) APGAS, being derived from both MPI
and OpenMP programming models, extracts parallelism at

Algorithm 1 R Distribution
1: finish async at p ∈ P {
2: Initialize R_c:array[array[tuple]](N)
3: for tuple ∈ list_of_R do
4: des=hash(tuple.key)
5: R_c(des).add(tuple)
6: end for
7: for i← 0..(N − 1) do
8: Serialize R_c(i) to ser_R_c(i)
9: Push ser_R_c(i) to r_R_c(i)(here) at place i

10: end for
11: }

Algorithm 2 Push Query Keys
1: finish async at p ∈ P {
2: Initialize T:array[hashmap[key,ArrayList(value)]](N)
3: for tuple ∈ list_of_S do
4: des=hash(tuple.key);
5: if tuple.key 6∈ T(des) then
6: T(des).put(tuple.key, tuple.value)
7: else
8: T(des).get(tuple.key).value.add(tuple.value)
9: end if

10: end for
11: for i← 0..(N − 1) do
12: Extract keys in T(i) to local_key_c(here)(i)
13: Serialize local_key_c(here)(i) to ser_key(i)
14: Push ser_key(i) to remote_key_c(i)(here) at place i
15: end for
16: }

both the distributed and single machine hierarchies; (3) the
abstract programming model supports the development of
succinct code which is easier to debug and maintain.

B. Parallel Implementation

R Distribution: We are interested in high performance
distributed memory join algorithms, therefore, we first read
all the tuples in ArrayList at each node, and commence
the distribution of R. The pseudocode of this process is
given in Algorithm 1. The array R_c is used to collect the
grouped tuples, and its size is initialized to the number of
computing nodes N . Then, each thread reads the arraylist of
R and groups the tuples according to the hash values of their
keys. After that, the grouped items are serialized and sent
to the corresponding remote place. This process is done in
parallel, and we use the finish predicate to guarantee the
completion of the tuple transfer in each place before pushing
query keys.

Push Query Keys: The detailed implementation of the
second step is given in Algorithm 2. A set of hashmap is
initialized at each place. Each hashmap collects tuples of

S according to their hash values. If the key of a tuple has
already been in the hashmap, then only the value part of
the tuple will be added in the hash table. After processing
all the tuples, the keys in each hash table will be extracted
by an iteration on its keyset. These keys will be kept in
local_key_c, and then serialized and pushed to the assigned
place for further processing.

Both the array[hashmap] and local_key_c are
DistArray objects, which are kept in memory for the
subsequent result lookups, as mentioned in Section III-A.
The serialization/deserialization process is used only when
the push array objects are neither long, int nor char, oth-
erwise we directly deploy the array.asycCopy method
to transfer the data. We use the finish operation in this part
to guarantee the completion of the data transfer at each place
before the next phase commences.

Count Matches and Return Queried Values: This phase
starts after the grouped query keys have been transferred
to the appropriate remote places. The implementation at
each place is similar to a sequential hash join. The received
serialized tuple and key arrays, representing the distributed
R and grouped query keys respectively, are deserialized. For
the tuples, all the <key,value> pairs and the an initialized
counter are placed in the local hash table T ′. The query
keys are used to access this hash table sequentially to get
their values. In this process, if the mapping of a key already
exists, its value is retrieved and the counter is increment by
one, otherwise, the value will be considered as null. In both
cases, the value of the query key is added into a temporary
array so that it can be sent back to the requester(s). All these
processes take place in parallel at each place, and we use
the finish operation for synchronization. The details of
the algorithm are given in Algorithm 3.

Result Lookups: The join results at each place can be
looked up after all the values of the query keys have been
pushed back. Since the query keys and their respective values
are held in order inside arrays, we can easily look up the keys
in the corresponding hash tables to organize the matched join
results as shown in Algorithm 4. In the meantime, we scan
the counter of each key in the local hash table T ′ and output
the corresponding non-matched results. The entire outer join
process terminates when all individual activities terminate.

C. The PRPD-based Methods using X10

For our purposes, the X10 implementation of the two
algorithms PRPD+Dup and PRPD+DER are as described
in the previous section. Additionally, for the part of PRPD
implementation we add a key sampling process on S to
measure the skew, wherein we use a hashmap counter
with two parameters: (1) sample rate, namely the ratio of
the tuples to be sampled, and (2) threshold, namely the
number of occurrences of a key in the sample after which
the corresponding tuples are considered as skew tuples.

Algorithm 3 Count Matches and Return Queried Values
1: finish async at p ∈ P {
2: Initialize T ′:hashmap, value_c:array[value]
3: for i← 0..(N − 1) do
4: Deserialize r_R_c(here)(i) to tuples
5: Put all <tuple.key, (tuple.value, 0)> into T ′

6: end for
7: for i← 0..(N − 1) do
8: Deserialize remote_key_c(here)(i) to key_c
9: for key ∈ key_c do

10: if key ∈ T ′ then
11: value_c.add(T ′.get(key).value)
12: T ′.get(key).counter++
13: else
14: value_c.add(null)
15: end if
16: end for
17: Push value_c(i) to r_value_c(i)(here) at place i
18: end for
19: }

Algorithm 4 Results Lookups
1: finish async at p ∈ P {
2: for i← 0..(N − 1) do
3: Deserialize r_value_c(here)(i) to local_value_c
4: for value ∈ local_value_c do
5: if value 6= null then
6: Look corresponding key in T (i)
7: Output matched results
8: end if
9: end for

10: end for
11: for key ∈ T ′ do
12: if T ′.get(key).counter == 0 then
13: Output non-matched results
14: end if
15: end for
16: }

V. EVALUATION

In this section, we present the results of our experimental
evaluation on a commodity cluster and a comparison with
the state-of-the-art.

A. Platform

Our evaluation platform is the High-Performance Systems
Research Cluster in IBM Research Ireland. Each compu-
tation unit of this cluster is an iDataPlex node with two
6-core Intel Xeon X5679 processors running at 2.93 GHz,
resulting in a total of 12 cores per physical node. Each node
has 128GB of RAM and a single 1TB SATA hard-drive
and nodes are connected by Gigabit Ethernet. The operating

system is Linux kernel version 2.6.32-220 and the software
stack consists of X10 version 2.3 compiling to C++ and gcc
version 4.4.6.

B. Datasets

The evaluation is implemented on two relations R and S,
which are both two-column tables that are populated with
random data. The key and payload are both set to 8-byte
integers. The cardinality of R is set to 64M tuples1 and S
to 1B tuples. Joins with such characteristics are common
in data warehouses, column-oriented architectures and non-
relational stores (e.g. see [17]) .

Three key distributions are examined in our tests: uniform,
low skew and high skew. Skew is only present on S and
follows a Zipf distribution. The skew tuples are evenly
distributed on each computing node and the skew factor
is set to 1 for the low skew (top ten popular keys appear
14% of the time) and 1.4 for the high skew dataset (top ten
popular keys appear 68% of the time). For the two skewed
two datasets, the selectivity factor for joins is set to 100%
as default.

C. Setup

We set the X10_NPLACES to the number of cores and
N_Thread to 1, namely one place for a single activity,
which avoids the overhead of context switching at runtime.
The parameter sample rate is set to 10%, and the threshold is
set to a reasonable number 100 based on preliminary results.
In all experiments, we only count the number of join results,
but do not actually output them. Moreover, we record the
mean value based on five measurements and we empty the
file system cache between tests to minimize the effects of
caching by the operating system.

D. Runtime

We examined the runtime of four algorithms: the ba-
sic hash-based algorithm (referred as Hash), PRPD+Dup,
PRPD+DER and our QC approach. We implement these
tests using 16 nodes (192 cores) of the cluster on the default
datasets with different skew.

1) Performance: The results in Figure 5 show that: (1)
when S is uniform, the first three algorithms perform nearly
the same and much better than our QC implementation; (2)
with low skew, PRPD+DER becomes the fastest and our
approach is better than the other two methods; and (3) with
high skew, our approach outperforms the other three. In this
process, the method PRPD+DER performs very well under
skew, which confirms our expectation in Section II-D. At
the same time, the PRPD+Dup implementation shows the
worst poor performance under skew, even worse than Hash,
which means that skew handling techniques designed for
inner joins can not always be applied for outer joins directly.

1Throughout this paper, when referring to tuples, M=220 and B=230

4 5 . 7 4 9 . 5

1 8 0 . 4

4 7 . 4
7 3 . 9

2 1 5 . 3

4 8 . 1
2 5 . 9 1 6 . 8

1 3 6 . 8

4 9

1 2 . 1
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

s k e w = 1 . 4s k e w = 1s k e w = 0

Ru
nti

me
 (s

)

A l g o r i t h m / S k e w

 H a s h
 P R P D + D u p
 P R P D + D E R
 Q C

Figure 5. Runtime comparison of the four algorithms under different skews
(with selectivity factor 100% over 192 cores).

We also observe that with increasing of data skew, the
time cost of Hash increases sharply while our scheme
decreases sharply, which indicates that our QC approach
has total opposite properties compared with the commonly
used hash-based join algorithm. In the meantime, although
both the PRPD+Dup and PRPD+DER algorithms can be
considered as hybrid methods on the basis of the con-
ventional hash-based and duplication-based methods, the
runtime of PRPD+Dup increases even more sharply than
Hash, while PRPD+DER decreases with skew and shows
its robustness against skew. This confirms that state-of-the-
art optimization for outer joins can bring in significant
performance improvements. QC performs the best under
high skew conditions, where conventional methods fail. As
such, our method can be considered as a supplement for the
existing schemes. In fact, the optimizer in a system could
pick the correct implementation based on the skew of the
input so as to minimize runtime.

2) Selectivity Experiments: We also examine how join
selectivity affects the performance for each algorithm. For
both the low skew and high skew distributions, we created
two different S that have the same cardinality as the default
dataset but only 50% and 0% of the tuples join with a tuple
in R.

The results for the low skew dataset are presented in
Figure 6. There, the PRPD+Dup algorithm shows lower
runtime with decreasing selectivity, and the runtime of the
other three methods does not change or slightly decreases.
This is reasonable, (1) PRPD+Dup has to process the inter-
mediate matched join results, the number of which depends
on the join selectivity; (2) the transfer and join operations
in Hash remain the same with different selectivity; (3)
though the number of the non-matched results increases with
decreasing selectivity, PRPD+DER only needs to redistribute
the non-matching row-ids for Rdup 1 Sloc, which remains
small because Rdup is always small; and (4) the number of
operations on counters and the final result lookups decreases
with decreasing selectivity, leading to slightly performance

4 9 . 5 5 1 . 8 5 0 . 9

7 3 . 9

5 8 . 2

2 8 . 22 5 . 9 2 6 . 5 2 6

4 9 4 4 . 7 4 2 . 9

0

2 0

4 0

6 0

8 0

1 0 0

Ru
nti

me
 (s

)

A l g o r i t h m / S e l e c t i v i t y

 H a s h
 P R P D + D u p
 P R P D + D E R
 Q C

s e l e c t . = 0 %s e l e c t . = 5 0 %s e l e c t . = 1 0 0 %

Figure 6. Runtime of the four algorithms under low skew by varying the
join selectivity factor (skew = 1 over 192 cores).

1 8 0 . 4 1 8 1 . 8 1 8 1 . 6

2 1 5 . 3

1 7 5 . 7

1 71 6 . 8 1 5 . 7 1 6 . 11 2 . 1 1 1 . 7 1 0 . 8
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

Ru
nti

me
 (s

)

A l g o r i t h m / S e l e c t i v i t y

 H a s h
 P R P D + D u p
 P R P D + D E R
 Q C

s e l e c t . = 0 %s e l e c t . = 5 0 %s e l e c t . = 1 0 0 %

Figure 7. Runtime of the four algorithms under high skew by varying the
join selectivity factor (skew = 1.4 over 192 cores).

improvement in our QC algorithm. These also appear when
the dataset is highly skewed as shown in Figure 7. There,
PRPD+Dup changes sharply, showing its sensitivity to the
join selectivity. In contrast to this, our QC algorithm is robust
and also outperforms the other three methods, demonstrating
its strong ability to handling high skew in outer joins again.

E. Network Communication

Performance regarding communication costs is evaluated
by measuring the number of received tuples. We implement
our test on 192 cores, and collect the received tuples (keys) at
each place by inserting counters. The results of the average
number of received tuples for each place are shown in
Figure 8.

We can see that all the four algorithms receive the
same number of tuples when the dataset is uniform. This
is reasonable, since all tuples in Hash, PRPD+Dup and
PRPD+DER are processed only by redistribution as there
is no skew and the number of query keys is equal to the
number of total keys in our QC algorithm. With the increase
in skew, the received tuples in Hash and PRPD+Dup does
not change. In contrast, PRPD+DER and our method show a
significant decrease, demonstrating they can handle the skew

0

1

2

3

4

5

6

7

R
ec

eiv
ed

 Tu
ple

s (
mi

llio
n)

 H a s h P R P D + D u p P R P D + D E R Q C

s k e w = 1 . 4s k e w = 1s k e w = 0
A l g o r i t h m / S k e w

Figure 8. The average number of received tuples (or keys) for each place
under different skews (with selectivity factor 100% over 192 cores).

Table I
THE NUMBER OF RECEIVED TUPLES AT EACH PLACE (MILLIONS)

Algo.\skew
0 1 1.4

Max. Avg. Max. Avg. Max. Avg.

Hash 5.94 5.94 62.40 5.93 347.78 5.94
PRPD+Dup 5.94 5.94 62.43 5.96 347.80 5.96
PRPD+DER 5.94 5.94 3.95 3.85 0.92 0.84

QC 5.94 5.94 2.12 2.12 0.43 0.43

effectively. In addition, our method transfers much less data
than PRPD+DER. All of this shows that our implementation
can reduce the network communication more efficiently than
other approaches under skew.

F. Load Balancing

We analyze the load balancing of each algorithm based
on the metric: number of received tuples (keys) at each
place. The reason is that this number can indicate both the
communication and computation time cost. The more tuples
a place receives, the more time will be spent on data transfer
and join (build and probe) operations at this place. Though
we have to push the values back and implement the result
lookups in our QC algorithm, the number of returned values
is the same as the received keys, which has the same effect
for load balancing.

As the place that receives the maximum number of tuples
dominates the final runtime, we just report results of the
maximum and average numbers for this metric, which is
shown in Table I. We can see that all four algorithms
achieves perfect load balancing when the dataset is uniform.
As the skew increases, the load balancing of the hash-based
algorithm and PRPD+Dup becomes much worse. In the
meantime, though PRPD+DER shows much improvement
for that condition, our QC approach still much better than
PRPD+DER.

G. Scalability

We test the scalability of our implementation by varying
number of processing cores under skew, from 24 cores (2

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 9 29 62 4 4 8

s k e w = 1 . 4

s k e w = 1

Ru

nti
me

 (s
)

N u m b e r o f C o r e s

 p h a s e 1
 p h a s e 2
 p h a s e 3
 p h a s e 4

1 9 29 62 4 4 8 1 9 29 62 4 4 8

Figure 9. The runtime breakdown of the QC algorithm under skews by
varying number of cores (with selectivity factor 100%).

nodes) up to 192. The results are shown in Figure 9. Each
phase is consistent with the implementation explained in
Section IV-B.

We can see that the implementation generally scales well
with the number of cores. Doubling number of cores brings
in 1.30x - 1.44x speedup for the low skew dataset and 1.68x
- 1.92x for high skew. In detail, phases 1, 2 and 4 scale
well and phase 3 is slightly affected by increasing number
of cores. The reason would be that the number of received
query keys at each place does not obviously change with
increasing number of cores in phase 3. This leads in little
change in the time cost on the corresponding operations
such as hash table lookups and pushing returned values. For
example, if there are 2M skew tuples with the same key {1}
at each place over 48 cores, then the first place will receive
48 keys {1} in phase 3. Although the number of tuples with
key {1} decreases to 1M at each place when using 96 cores,
the received query key {1} at the first place will increase to
96, greater than the previously 48. And such increase will
be leveraged by the decrease of the non-skewed query keys
received at this node. Finally, we note that cost of the fourth
phase is very small under high skew. The reason is that both
the size of hash tables in T and the number of looked up
elements (returned values) at each place is very small in our
tests, resulting in a final lookup cost in the order of seconds.

VI. CONCLUSIONS

In this paper, we have introduced a new outer joins
algorithm, query with counters, which specifically targets
processing outer joins with high skew. We have presented
an implementation of our approach using the X10 system.
Our experimental results show that our implementation is
scalable and can efficiently handle skew. Compared to the
state-of-art PRPD+DER techniques [10] [11], our algorithm
is faster with less network communication under high skew.

We will combine our method with approaches that par-
tition data according to key skew in the future, so as to
achieve more robustness and higher performance on outer

joins. In addition, we will investigate extensions to handle
nonuniform network throughput (e.g. outer joins across
racks). Finally, we intend to apply our approach in the
semantic web domain, where workloads present very high
skew [17].

ACKNOWLEDGMENTS

This work is supported by Irish Research Council and
IBM Research Ireland.

REFERENCES

[1] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen,
N. Satish, J. Chhugani, A. Di Blas, and P. Dubey, “Sort vs.
hash revisited: fast join implementation on modern multi-core
cpus,” PVLDB, vol. 2, no. 2, pp. 1378–1389, Aug. 2009.

[2] G. A. Cagri Balkesen, Jens Teubner and M. T. Öszu, “Main-
memory hash joins on multi-core cpus: Tuning to the under-
lying hardware,” in ICDE, 2013.

[3] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo,
and P. Sander, “Relational joins on graphics processors,” in
SIGMOD, 2008, pp. 511–524.

[4] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk, “Gpu join
processing revisited,” in DaMoN, 2012, pp. 55–62.

[5] C. B. Walton, A. G. Dale, and R. M. Jenevein, “A taxonomy
and performance model of data skew effects in parallel joins,”
in VLDB, 1991, pp. 537–548.

[6] D. DeWitt and J. Gray, “Parallel database systems: the future
of high performance database systems,” Commun. ACM,
vol. 35, no. 6, pp. 85–98, Jun. 1992.

[7] X. Zhang, T. Kurc, T. Pan, U. Catalyurek, S. Narayanan,
P. Wyckoff, and J. Saltz, “Strategies for using additional
resources in parallel hash-based join algorithms,” in HPDC,
2004, pp. 4–13.

[8] G. Bhargava, P. Goel, and B. Iyer, “Hypergraph based re-
orderings of outer join queries with complex predicates,” in
SIGMOD, 1995, pp. 304–315.

[9] D. Kossmann, “The state of the art in distributed query
processing,” ACM Comput. Surv., vol. 32, no. 4, pp. 422–
469, Dec. 2000.

[10] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen, “Handling
data skew in parallel joins in shared-nothing systems,” in
SIGMOD, 2008, pp. 1043–1052.

[11] Y. Xu and P. Kostamaa, “A new algorithm for small-large
table outer joins in parallel dbms,” in ICDE, 2010, pp. 1018–
1024.

[12] B. Glavic and G. Alonso, “Perm: Processing provenance and
data on the same data model through query rewriting,” in
ICDE, 2009, pp. 174–185.

[13] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-
oriented approach to non-uniform cluster computing,” in
OOPSLA, 2005, pp. 519–538.

[14] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Se-
shadri, “Practical skew handling in parallel joins,” in VLDB,
1992, pp. 27–40.

[15] M. Al Hajj Hassan and M. Bamha, “An efficient parallel algo-
rithm for evaluating join queries on heterogeneous distributed
systems,” in HiPC, 2009, pp. 350–358.

[16] S. Blanas, Y. Li, and J. M. Patel, “Design and evaluation of
main memory hash join algorithms for multi-core cpus,” in
SIGMOD, 2011, pp. 37–48.

[17] S. Kotoulas, E. Oren, and F. van Harmelen, “Mind the
data skew: distributed inferencing by speeddating in elastic
regions,” in WWW, 2010, pp. 531–540.

