279 research outputs found

    Early Ontogeny of the Japanese Common Squid Todarodes pacificus (Cephalopoda, Ommastrephidae) with Special Reference to its Characteristic Morphology and Ecological Significance

    Get PDF
    Early ontogeny of the Japanese Common Squid Todarodes pacificus was described for artificially inseminated and collected specimens to present new criteria for developmental stages in relation to its ecological adaptation. For the purpose, details for formation of the following organs and tissues were observed with special attention: cilia on the integument, mouth part, shell sac and stellate ganglia, visceral mass, funnel-collar complex, statocysts, eye parts, and ventral photosensitive vesicles. At the embryonic stage (i.e., pre-hatching), various types of epidermal cilia that seem to work as the embryonic rotation were detected. At the early postembryonic stage (i.e., post-hatching), the epidermal lines were characteristically arranged at the scattered condition on arms, tentacles, head, and funnel. Novel strong muscle fibers were distinct in the base of tentacles and funnel retractor muscles at the early postembryonic stage, which is clearly related to the head withdrawal behavior of the paralarvae. The lip cilia and toothed beak developed at the early postembryonic stage, but disappeared later; these apparatus were considered to be related with a change of unique feeding mode in the paralarval life. Based on such morphological features, four distinct stages, namely, paralarval stage 1, 2, 3, and juvenile stage are proposed. The present observations are discussed in relation to survival strategy at early life of T. pacificus and they are compared with those in other cephalopods

    Increased CDC20 expression is associated with pancreatic ductal adenocarcinoma differentiation and progression

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Cell division cycle 20 (CDC20) homolog is an anaphase-promoting complex activator that is essential for cell division, but whether its expression in pancreatic ductal adenocarcinoma (PDAC) is significant is unknown. In this retrospective study, we determined whether aberrant CDC20 expression can be used as a biomarker in pancreatic ductal adenocarcinoma (PDAC) tumorigenesis and whether its expression reflects clinical progression.</p> <p>Experimental design</p> <p>We compared CDC20 expression levels in normal, cancerous, and inflamed pancreatic tissues from stage II PDAC patients with clinical outcomes and determined CDC20 levels in seven PDAC cell lines. CDC20 was identified using a cDNA microarray database containing gene expression profiles for PDAC tissues and cell lines and chronic pancreatitis and normal pancreas tissues. Its expression was confirmed by real-time quantitative reverse-transcriptase-polymerase chain reaction (qRT-PCR). An immunohistochemical analysis of tissue microarrays from resected PDAC tumors and paired benign pancreatic tissues was done and CDC20 levels were correlated with clinical outcome.</p> <p>Results</p> <p>Fifty-six patients were included in this study. A microarray analysis revealed 5-fold higher CDC20 expression in PDAC tissue than in chronic pancreatitis tissue. A qRT-PCR analysis confirmed a mean 20-fold higher CDC20 level in PDAC tissue than in normal pancreas and pancreatitis tissue. RNA and protein CDC20 expression was detected in several PDAC cell lines. An immunohistochemical analysis revealed higher CDC20 protein expression levels in PDAC tissue than in normal pancreas tissue, and high CDC20 expression was associated with poor differentiation (<it>P </it>= 0.020) and a significantly lower 5-year recurrence-free survival rate (<it>P </it>= 0.039); we also found a trend toward a shorter overall survival duration.</p> <p>Conclusions</p> <p>Aberrant CDC20 expression may play an important role in PDAC tumorigenesis and progression and may thus be useful as a marker of disease progression and prognosis and as a therapeutic target.</p

    Identification of Cis-Acting Promoter Elements in Cold- and Dehydration-Induced Transcriptional Pathways in Arabidopsis, Rice, and Soybean

    Get PDF
    The genomes of three plants, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max), have been sequenced, and their many genes and promoters have been predicted. In Arabidopsis, cis-acting promoter elements involved in cold- and dehydration-responsive gene expression have been extensively analysed; however, the characteristics of such cis-acting promoter sequences in cold- and dehydration-inducible genes of rice and soybean remain to be clarified. In this study, we performed microarray analyses using the three species, and compared characteristics of identified cold- and dehydration-inducible genes. Transcription profiles of the cold- and dehydration-responsive genes were similar among these three species, showing representative upregulated (dehydrin/LEA) and downregulated (photosynthesis-related) genes. All (46 = 4096) hexamer sequences in the promoters of the three species were investigated, revealing the frequency of conserved sequences in cold- and dehydration-inducible promoters. A core sequence of the abscisic acid-responsive element (ABRE) was the most conserved in dehydration-inducible promoters of all three species, suggesting that transcriptional regulation for dehydration-inducible genes is similar among these three species, with the ABRE-dependent transcriptional pathway. In contrast, for cold-inducible promoters, the conserved hexamer sequences were diversified among these three species, suggesting the existence of diverse transcriptional regulatory pathways for cold-inducible genes among the species

    Chromosome 9p copy number gains involving PD-L1 are associated with a specific proliferation and immune-modulating gene expression program active across major cancer types

    Get PDF
    BACKGROUND: Inhibition of the PD-L1/PD-1 immune checkpoint axis represents one of the most promising approaches of immunotherapy for various cancer types. However, immune checkpoint inhibition is successful only in subpopulations of patients emphasizing the need for powerful biomarkers that adequately reflect the complex interaction between the tumor and the immune system. Recently, recurrent copy number gains (CNG) in chromosome 9p involving PD-L1 were detected in many cancer types including lung cancer, melanoma, bladder cancer, head and neck cancer, cervical cancer, soft tissue sarcoma, prostate cancer, gastric cancer, ovarian cancer, and triple-negative breast cancer. METHODS: Here, we applied functional genomics to analyze global mRNA expression changes associated with chromosome 9p gains. Using the TCGA data set, we identified a list of 75 genes that were strongly up-regulated in tumors with chromosome 9p gains across many cancer types. RESULTS: As expected, the gene set was enriched for chromosome 9p and in particular chromosome 9p24 (36 genes and 23 genes). Furthermore, we found enrichment of two expression programs derived from genes within and beyond 9p: one implicated in cell cycle regulation (22 genes) and the other implicated in modulation of the immune system (16 genes). Among these were specific cytokines and chemokines, e.g. CCL4, CCL8, CXCL10, CXCL11, other immunoregulatory genes such as IFN-G and IDO1 as well as highly expressed proliferation-related kinases and genes including PLK1, TTK, MELK and CDC20 that represent potential drug targets. CONCLUSIONS: Collectively, these data shed light on mechanisms of immune escape and stimulation of proliferation in cancer with PD-L1 CNG and highlight additional vulnerabilities that may be therapeutically exploitable

    NAHA, a Novel Hydroxamic Acid-Derivative, Inhibits Growth and Angiogenesis of Breast Cancer In Vitro and In Vivo

    Get PDF
    BACKGROUND: We have recently synthesized novel N-alkylated amino acid-derived hydroxamate, 2-[Benzyl-(2-nitro-benzenesulfonyl)-amino]-N-hydroxy-3-methyl-N-propyl-butyramide (NAHA). Here, we evaluate the anticancer activity of NAHA against highly invasive human breast cancer cells MDA-MB-231 in vitro and in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Cell growth was evaluated by MTT and soft agar assays. Protein expression was determined by DNA microarray and Western blot analysis. Metastatic potential was evaluated by cell adhesion, migration, invasion, capillary morphogenesis, and ELISA assays. The anticancer activity in vivo was evaluated in mouse xenograft model. NAHA inhibited proliferation and colony formation of MDA-MB-231 cells together with the down-regulation of expression of Cdk2 and CDC20 proteins. NAHA inhibited cell adhesion, migration, and invasion through the suppression of secretion of uPA. NAHA suppressed secretion of VEGF from MDA-MB-231 cells and inhibited capillary morphogenesis of human aortic endothelial cells (HAECs). Finally, NAHA at 50 mg/kg was not toxic and decreased tumor volume and tumor weight in vivo. This suppression of tumor growth was associated with the inhibition of mitotic figures and induction of apoptosis, and the reduction of CD31 and VEGF positive cells in tumors. CONCLUSION: NAHA could be a novel promising compound for the development of new drugs for the therapy of invasive breast cancers

    Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer

    Get PDF
    Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-catabolising enzyme inducing immune tolerance. The present study aimed to investigate IDO expression and its prognostic significance in endometrial cancer. Indoleamine 2,3-dioxygenase expression in endometrial cancer tissues (n=80) was immunohistochemically scored as four groups (IDO−, 1+, 2+, and 3+). The high IDO expression (IDO2+ or 3+) in tumour cells was found in 37 (46.3%) of the 80 cases, and was positively correlated with surgical stage, myometrial invasion, lymph-vascular space involvement, and lymph node metastasis, but not with the histological grade. Patients with high IDO expression had significantly impaired overall survival and progression-free survival (PFS) (P=0.002 and P=0.001, respectively) compared to patients with no or weak expression of IDO (IDO− or 1+). The 5-year PFS for IDO−/1+, 2+, and 3+ were 97.7, 72.9, and 36.4%, respectively. Even in patients with early-stage disease (International Federation of Gynecology and Obstetrics I/II, n=64), the PFS for IDO2+/3+ was significantly poor (P=0.001) compared to that for IDO−/1+. On multivariate analysis, IDO expression was an independent prognostic factor for PFS (P=0.020). These results indicated that the high IDO expression was involved in the progression of endometrial cancer and correlated with the impaired clinical outcome, suggesting that IDO is a novel and reliable prognostic indicator for endometrial cancer

    The Accuracy of Survival Time Prediction for Patients with Glioma Is Improved by Measuring Mitotic Spindle Checkpoint Gene Expression

    Get PDF
    Identification of gene expression changes that improve prediction of survival time across all glioma grades would be clinically useful. Four Affymetrix GeneChip datasets from the literature, containing data from 771 glioma samples representing all WHO grades and eight normal brain samples, were used in an ANOVA model to screen for transcript changes that correlated with grade. Observations were confirmed and extended using qPCR assays on RNA derived from 38 additional glioma samples and eight normal samples for which survival data were available. RNA levels of eight major mitotic spindle assembly checkpoint (SAC) genes (BUB1, BUB1B, BUB3, CENPE, MAD1L1, MAD2L1, CDC20, TTK) significantly correlated with glioma grade and six also significantly correlated with survival time. In particular, the level of BUB1B expression was highly correlated with survival time (p<0.0001), and significantly outperformed all other measured parameters, including two standards; WHO grade and MIB-1 (Ki-67) labeling index. Measurement of the expression levels of a small set of SAC genes may complement histological grade and other clinical parameters for predicting survival time
    corecore