305 research outputs found

    ALMA observations of the variable 12CO/13CO ratio around the asymptotic giant branch star R Sculptoris

    Full text link
    [abridged] The 12CO/13CO ratio is often used as a measure of the 12C/13C ratio in the circumstellar environment, carrying important information about the stellar nucleosynthesis. External processes can change the 12CO and 13CO abundances, and spatially resolved studies of the 12CO/13CO ratio are needed to quantify the effect of these processes on the globally determined values. Additionally, such studies provide important information on the conditions in the circumstellar environment. The detached-shell source R Scl, displaying CO emission from recent mass loss, in a binary-induced spiral structure as well as in a clumpy shell produced during a thermal pulse, provides a unique laboratory for studying the differences in CO isotope abundances throughout its recent evolution. We observed both the 12CO(J=3-2) and the 13CO(J=3-2) line using ALMA. We find significant variations in the 12CO/13CO intensity ratios and consequently in the abundance ratios. The average CO isotope abundance ratio is at least a factor three lower in the shell (~19) than that in the present-day (60). Additionally, variations in the ratio of more than an order of magnitude are found in the shell itself. We attribute these variations to the competition between selective dissociation and isotope fractionation in the shell, of which large parts cannot be warmer than ~35 K. However, we also find that the 12CO/13CO ratio in the present-day mass loss is significantly higher than the 12C/13C ratio determined in the stellar photosphere from molecular tracers (~19). The origin of this discrepancy is still unclear, but we speculate that it is due to an embedded source of UV-radiation that is primarily photo-dissociating 13CO. This radiation source could be the hitherto hidden companion. Alternatively, the UV-radiation could originate from an active chromosphere of R Scl itself....Comment: 6 pages, 5 figures, online data available at http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/A+A/556/L

    Probing the inner wind of AGB stars: Interferometric observations of SiO millimetre line emission from the oxygen-rich stars R Dor and L2 Pup

    Full text link
    High angular resolution Australia Telescope Compact Array (ATCA) observations of SiO `thermal' millimetre line emission towards the two oxygen-rich, low mass loss rate AGB stars R Dor and L2 Pup are presented. In both cases the emission is resolved with an overall spherical symmetry. Detailed radiative transfer modelling of the SiO line emission has been performed, and the comparison between observations and models are conducted in the visibility plane, maximizing the sensitivity. The excitation analysis suggests that the abundance of SiO is as high as 4E-5 in the inner part of the wind, close to the predicted values from stellar atmosphere models. Beyond a radius of ~ 1E15 cm the SiO abundance is significantly lower, about 3E-6, until it decreases strongly at a radius of about 3E15 cm. This is consistent with a scenario where SiO first freezes out onto dust grains, and then eventually becomes photodissociated by the interstellar UV-radiation field. In these low expansion velocity sources the turbulent broadening of the lines plays an important role in the line formation. Micro-turbulent velocity widths in the range 1.1-1.5 km/s result in a very good reproduction of the observed line shapes even if the gas expansion velocity is kept constant. This, combined with the fact that the SiO and CO lines are well fitted using the same gas expansion velocity (to within 5-10%), suggest that the envelope acceleration occurs close to the stellar photosphere, within 20-30 stellar radii.Comment: Accepted for publication in A&A, 14 pages, 14 figure

    Hipparcos period-luminosity relations for Miras and semiregular variables

    Full text link
    We present period-luminosity diagrams for nearby Miras and semiregulars, selecting stars with parallaxes better than 20 per cent and well-determined periods. Using K-band magnitudes, we find two well-defined P-L sequences, one corresponding to the standard Mira P-L relation and the second shifted to shorter periods by a factor of about 1.9. The second sequence only contains semiregular variables, while the Mira sequence contains both Miras and semiregulars. Several semiregular stars show double periods in agreement with both relations. The Whitelock evolutionary track is shown to fit the data, indicating that the semiregulars are Mira progenitors. The transition between the two sequences may correspond to a change in pulsation mode or to a change in the stellar structure. Large amplitude pulsations leading to classical Mira classification occur mainly near the tip of the local AGB luminosity function.Comment: 10 pages with figures, accepted by ApJ Letter

    The detached dust shells of AQ And, U Ant, and TT Cyg

    Full text link
    Detached circumstellar dust shells are detected around three carbon variables using Herschel-PACS. Two of them are already known on the basis of their thermal CO emission and two are visible as extensions in IRAS imaging data. By model fits to the new data sets, physical sizes, expansion timescales, dust temperatures, and more are deduced. A comparison with existing molecular CO material shows a high degree of correlation for TT Cyg and U Ant but a few distinct differences with other observables are also found.Comment: Letter accepted for publication on the A&A Herschel Special Issu

    The circumstellar envelope around the S-type AGB star W Aql Effects of an eccentric binary orbit

    Get PDF
    The CO(J=3-2) emission from the CSE of the binary S-type AGB star W Aql has been observed at subarcsecond resolution using ALMA. The aim of this paper is to investigate the wind properties of the AGB star and to analyse how the known companion has shaped the CSE. The average mass-loss rate during the creation of the detected CSE is estimated through modelling, using the ALMA brightness distribution and previously published single-dish measurements as observational constraints. The ALMA observations are presented and compared to the results from a 3D smoothed particle hydrodynamics (SPH) binary interaction model with the same properties as the W Aql system and with two different orbital eccentricities. Three-dimensional radiative transfer modelling is performed and the response of the interferometer is modelled and discussed. The estimated average mass-loss rate of W~Aql agrees with previous results. The size of the emitting region is consistent with photodissociation models. The CO(J=3-2) emission is dominated by a smooth component overlayed with two weak arc patterns with different separations. The larger pattern is predicted by the binary interaction model with separations of 10" and therefore likely due to the known companion. It is consistent with a binary orbit with low eccentricity. The smaller separation pattern is asymmetric and coincides with the dust distribution, but the separation timescale (200 yrs) is not consistent with any known process of the system. The separation of the known companions of the system is large enough to not have a very strong effect on the circumstellar morphology. The density contrast across the envelope of a binary with an even larger separation will not be easily detectable, even with ALMA, unless the orbit is strongly asymmetric or the AGB star has a much larger mass-loss rate.Comment: 10 pages, 8 figure

    Dusty shells surrounding the carbon variables S Scuti and RT Capricorni

    Full text link
    For the Mass-loss of Evolved StarS (MESS) programme, the unprecedented spatial resolution of the PACS photometer on board the Herschel space observatory was employed to map the dusty environments of asymptotic giant branch (AGB) and red supergiant (RSG) stars. Among the morphologically heterogeneous sample, a small fraction of targets is enclosed by spherically symmetric detached envelopes. Based on observations in the 70 {\mu}m and 160 {\mu}m wavelength bands, we investigated the surroundings of the two carbon semiregular variables S Sct and RT Cap, which both show evidence for a history of highly variable mass-loss. S Sct exhibits a bright, spherically symmetric detached shell, 138" in diameter and co-spatial with an already known CO structure. Moreover, weak emission is detected at the outskirts, where the morphology seems indicative of a mild shaping by interaction of the wind with the interstellar medium, which is also supported by the stellar space motion. Two shells are found around RT Cap that were not known so far in either dust emission or from molecular line observations. The inner shell with a diameter of 188" shows an almost immaculate spherical symmetry, while the outer ~5' structure is more irregularly shaped. MoD, a modification of the DUSTY radiative transfer code, was used to model the detached shells. Dust temperatures, shell dust masses, and mass-loss rates are derived for both targets

    Unexpectedly large mass loss during the thermal pulse cycle of the red giant R Sculptoris!

    Get PDF
    The asymptotic giant branch star R Sculptoris is surrounded by a detached shell of dust and gas. The shell originates from a thermal pulse during which the star undergoes a brief period of increased mass loss. It has hitherto been impossible to constrain observationally the timescales and mass-loss properties during and after a thermal pulse - parameters that determine the lifetime on the asymptotic giant branch and the amount of elements returned by the star. Here we report observations of CO emission from the circumstellar envelope and shell around R Sculptoris with an angular resolution of 1.3 arcsec. What was hitherto thought to be only a thin, spherical shell with a clumpy structure, is revealed to contain a spiral structure. Spiral structures associated with circumstellar envelopes have been seen previously, from which it was concluded that the systems must be binaries. Using the data, combined with hydrodynamic simulations, we conclude that R Sculptoris is a binary system that underwent a thermal pulse approximately 1800 years ago, lasting approximately 200 years. About 0.003 Msun of mass was ejected at a velocity of 14.3 km s-1 and at a rate approximately 30 times higher than the prepulse mass-loss rate. This shows that approximately 3 times more mass is returned to the interstellar medium during and immediately after a pulse than previously thought.Comment: Accepted by Natur

    Privacy-Preserving Observation in Public Spaces

    Get PDF
    One method of privacy-preserving accounting or billing in cyber-physical systems, such as electronic toll collection or public transportation ticketing, is to have the user present an encrypted record of transactions and perform the accounting or billing computation securely on them. Honesty of the user is ensured by spot checking the record for some selected surveyed transactions. But how much privacy does that give the user, i.e. how many transactions need to be surveyed? It turns out that due to collusion in mass surveillance all transactions need to be observed, i.e. this method of spot checking provides no privacy at all. In this paper we present a cryptographic solution to the spot checking problem in cyber-physical systems. Users carry an authentication device that authenticates only based on fair random coins. The probability can be set high enough to allow for spot checking, but in all other cases privacy is perfectly preserved. We analyze our protocol for computational efficiency and show that it can be efficiently implemented even on plat- forms with limited computing resources, such as smart cards and smart phones

    The VLTI/MIDI view on the inner mass loss of evolved stars from the Herschel MESS sample

    Get PDF
    The mass-loss process from evolved stars is a key ingredient for our understanding of many fields of astrophysics, including stellar evolution and the chemical enrichment of the interstellar medium via stellar yields. One the main unsolved questions is the geometry of the mass-loss process. Taking advantage of the results from the Herschel Mass loss of Evolved StarS (MESS) programme, we initiated a coordinated effort to characterise the geometry of mass loss from evolved red giants at various spatial scales. For this purpose we used the MID-infrared interferometric Instrument (MIDI) to resolve the inner envelope of 14 asymptotic giant branch stars (AGBs) in the MESS sample. In this contribution we present an overview of the interferometric data collected within the frame of our Large Programme, and we also add archive data for completeness. We studied the geometry of the inner atmosphere by comparing the observations with predictions from different geometric models. Asymmetries are detected for five O-rich and S-type, suggesting that asymmetries in the N band are more common among stars with such chemistry. We speculate that this fact is related to the characteristics of the dust grains. Except for one star, no interferometric variability is detected, i.e. the changes in size of the shells of non-mira stars correspond to changes of the visibility of less than 10%. The observed spectral variability confirms previous findings from the literature. The detection of dust in our sample follows the location of the AGBs in the IRAS colour-colour diagram: more dust is detected around oxygen-rich stars in region II and in the carbon stars in region VII. The SiC dust feature does not appear in the visibility spectrum of UAnt and SSct, which are two carbon stars with detached shells. This finding has implications for the theory of SiC dust formation.Comment: 43 pages, 31 figures; accepted for publication in Astronomy & Astrophysics. Abstract shortened for compilation reasons. Metadata correcte
    • …
    corecore