
Privacy-Preserving Observation in Public Spaces

Florian Kerschbaum1 and Hoon Wei Lim2

1 SAP
Karlsruhe, Germany

florian.kerschbaum@sap.com
2 Singtel R&D Labs

Singapore
limhoonwei@singtel.com

Abstract. One method of privacy-preserving accounting or billing in
cyber-physical systems, such as electronic toll collection or public trans-
portation ticketing, is to have the user present an encrypted record of
transactions and perform the accounting or billing computation securely
on them. Honesty of the user is ensured by spot checking the record for
some selected surveyed transactions. But how much privacy does that
give the user, i.e. how many transactions need to be surveyed? It turns
out that due to collusion in mass surveillance all transactions need to
be observed, i.e. this method of spot checking provides no privacy at all.
In this paper we present a cryptographic solution to the spot checking
problem in cyber-physical systems. Users carry an authentication device
that authenticates only based on fair random coins. The probability can
be set high enough to allow for spot checking, but in all other cases pri-
vacy is perfectly preserved. We analyze our protocol for computational
efficiency and show that it can be efficiently implemented even on plat-
forms with limited computing resources, such as smart cards and smart
phones.

1 Introduction

Cyber-physical systems are starting to permeate our daily lives. They record time
and location information – together with sensory data – of ourselves and this
data is, in turn, used to analyze our behavior in the physical world. A common
application of such cyber-physical systems is billing, e.g. for toll collection [2,
22, 26], public transportation [11, 17, 28], or electric vehicle charging [21]. The
cyber-physical sensor records our identity, time, location and consumption. This
data is then used to bill us based on the recorded transactions.

An obvious problem with this approach is privacy. All our transactions in the
physical world are recorded and can be also analyzed for purposes other than
billing. Every search engine or web-based e-mail user already gets displayed a
huge amount of personalized ads.

Instead of centrally collecting all transactions they can be stored on user-
owned devices. The user then presents its collected record of transactions and
pays its bill. While this would remove the central data storage, the service

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/144786196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

provider observes all transactions during payment and could theoretically re-
tain a copy. An approach for protecting privacy is to have the user present an
encrypted record of transactions. A computation on the encrypted transactions
then results in the billing amount. No information – in the clear – is revealed
during this process. This approach has been taken in [2, 11, 17, 21, 22, 26, 28].
Similar approaches can be realized using secure multi-party computation [4, 5,
13–16, 18, 19, 30].

The problem is, of course, that the billed person could cheat and present
an incomplete, tampered or even empty record of transactions. A solution is
to record some transactions of the user in the physical world and spot check
whether he honestly included them in the presented transactions during bill
payment. Popa et al. [26] and Balasch et al. [2] recently presented systems for
road toll pricing that follow this model. Yet, the problem is still not solved,
since the users may collude in order to determine where and when they have
been observed. Meiklejohn et al. [22] therefore proposed to keep the spots that
are checked secret.

A problem that arises in the approach of [22] is that collusion among dishon-
est users is still possible, even if the spot checks are kept secret. A dishonest user
may risk paying the penalty, if he gains from the information obtained. If this
user is caught, he must be presented evidence that he cheated which reveals the
observed spot. Dishonest users may therefore collude by submitting incomplete
records of transactions and share the obtained information and the penalties for
getting caught. We show in Section 3 that mass surveillance cannot prevent this
collusion under reasonable penalties and all transactions need to be observed in
order to prevent collusion. Clearly, this method then provides no privacy at all.
Moreover, we argue that the proposal of [22] does not solve the problem of en-
forcing honesty vs. privacy. The question one has to ask is how many transactions
need to be surveyed. Too few transactions may enable cheating and too many
violate privacy. We investigate whether there is a privacy-compliant trade-off in
public spot checking.

We propose a cryptographic solution to this problem. Particularly, we present
a protocol for a privacy-preserving spot checking device. The basic idea is to
run a randomized oblivious transfer of the trace of an authentication protocol
and a random message. This device may authenticate the carrier (due to the
authentication protocol) with a random probability that cannot be tweaked by
the carrier (if the oblivious transfer sends the authentication trace). The observer
learns nothing with a probability that cannot be tweaked by the reader (if the
oblivious transfer sends the random message). The probability of authentication
can be set high enough to allow for spot checking, but low enough to provide
reasonable privacy. Since it is a personal device authenticating only its carrier,
no information can be shared, and thus completely preventing collusion attacks.

We emphasize that the construction of our protocol is very efficient. We
neither need any secure hardware nor verifiable encryption using zero-knowledge
proofs. We achieve this by using a definition of fairness secure against one-sided
malicious adversaries only restricting the attacks to incentive-compatible ones.

All our security objectives are provably achieved using efficient, established
building blocks and assumptions. A secure device could be built from the speci-
fication by anyone – even suspicious citizens. Furthermore, we optimize the pro-
tocol for performance and present an implementation analysis of the optimized
version for weak computation devices. We estimate that the protocol can be run
in roughly half a second on very weak smart cards. As a conclusion it is likely
that the protocol can be run even on flowing traffic without any disruptions.

In this paper we contribute

– an economic analysis of collusion in spot checked cyber-physical systems;
– a protocol for privacy-preserving spot checking;
– an implementation analysis of this protocol for weak computational devices.

The remainder of this paper is structured as follows. In the next section, we
give a brief overview of related work on privacy-preserving electronic billing or
accounting systems. In Section 3 we present our economic analysis of collusion in
these systems. Then, we describe our privacy-preserving spot checking protocol
in Section 4. We also give an implementation analysis and discuss the trade-off
between privacy and enforcement of honesty. In Section 5 we give an example
application and we present our conclusions in Section 6.

2 Related Work

2.1 Privacy-Preserving Billing

Toll Collection Cryptographic privacy-preserving toll collection systems [2,
22, 26] have been proposed to resolve the tension between the desire for sophis-
ticated road pricing schemes and drivers’ interest in maintaining the privacy of
their driving patterns. At the core of these systems is a monthly payment and
an audit protocols performed between the driver, via an on-board unit (OBU),
the toll service provider (operating the OBU) and the local government. Each
driver commits to the road segments she traversed over the month and the cost
associated with each segment. To ensure honest reporting, the systems rely on
the audit protocol, which in turn, makes use of unpredictable spot checks by
hidden roadside cameras. At month’s end, the driver is challenged to show that
her committed road segments include the segments in which she was observed,
and that the corresponding prices are correct. (More description of such an audit
protocol for privacy-preserving toll collection is given in Section 5.) As long as
the spot checks are done unpredictably, any driver attempting to cheat will be
caught with high probability. Meiklejohn et al. [22] proposed a system called
Milo, which employs an oblivious transfer technique based on blind identity-
based encryption [9] in its audit protocol, such that spot checks on a driver’s
committed road segments can be performed without revealing the checked lo-
cations. Nevertheless, privacy is preserved with respect to only the toll service
provider. The cameras can actually observe all vehicles at all times, and thus,
there is completely no privacy against the local government (audit authority),
which can trace any vehicle and learn its driving patterns through the cameras.

e-Ticketing in Public Transportation The use of contactless smart cards as
electronic tickets (e-tickets) is popular in public transportation systems in many
countries world-wide [11, 17, 28]. However, majority of existing e-ticketing sys-
tems are not designed to protect user privacy, i.e. travel records leak commuters’
location information. In fact, transportation companies collect commuters’ travel
history in order to analyze traffic patterns and detect fraudulent transactions.
However, this clearly is a privacy breach. Kerschbaum et al. [17] recently pro-
posed a cryptographic solution for bill processing of travel records while allowing
privacy-preserving data mining and analytics. However, privacy is achieved at
the expense of high processing overhead of encrypted travel records and the need
for an independent key management authority. Also, no notion of spot checking
is used in their system.

Electric Vehicle Charging Electric vehicles have been used as a more environ-
mental-friendly alternative to traditional gasoline-based vehicles. However, elec-
tric vehicles require frequent recharging at dedicated locations. If not done prop-
erly, information of a driver’s whereabouts can be leaked through the underlying
payment system. Liu et al. [21] designed an anonymous payment protocol for en-
hancing the location privacy of electric vehicles. While a driver’s location privacy
is preserved against the power grid company, a malicious local government is still
able to reveal any past transactions.

Variants of Oblivious Transfer Oblivious transfer is a protocol between a
sender and a receiver. In its most simple form, the sender has two messages and
the receiver learns one without learning anything about the other one. Oblivious
transfer has been introduced by Rabin [27] where the message received was a
joint random choice between sender and receiver. Even et al. generalized this to
a setting where the receiver could choose which message he receives [7].

Oblivious transfer is a very powerful primitive. Kilian showed that all cryp-
tographic primitives can be based on oblivious transfer [20]. Also many variants
of oblivious transfer exist. In priced oblivious transfer [1] a price is deducted
from an encrypted account for each message received. In k-out-of-n oblivious
transfer [3] k messages can be chosen amongst n. We employ oblivious trans-
fer in a new setting with authentication. Private information retrieval (PIR) is
incompatible with our setting, since it may reveal information about the non-
transferred message.

2.2 Threat Model

In privacy-preserving billing systems, the goal is to protect the location infor-
mation of users while ensuring that the users behave in an honest manner.

We assume that there exist various semi-honest parties who may be interested
in garnering information about users’ travel patterns and location information;
for example, service providers may do this for business reasons, local government

for social or political reasons, and even users themselves may attempt to learn
other users’ whereabouts for malicious motives.

Moreover, there are dishonest users who may find every opportunity to cheat,
including colluding with other users or deviating arbitrarily from the associated
payment protocol. That is, they would attempt to avoid paying or paying less
than they should for the services they have received.

3 Collusion Attack

Meiklejohn et al. [22] claim for their system Milo that it prevents collusion
attacks, since it does not reveal the spot checked locations to an honest user.
In this section we investigate the economic feasibility of a collusion attack for
dishonest users. We consider a simplified model where the penalties and costs
are linear in the number of transactions, but conjecture that similar solutions
can be found in the non-linear case. Our conclusion is that in mass surveillance
possible collusion leads to the need for observing all transactions.

3.1 Model

We divide time and space into discrete spots. Spots have a certain duration –
usually as long as an observation period. Not all spots of a location must be
observed, imagine, for example, mobile cameras.

A spot can be either observed, i.e. all transactions of users are recorded, or
unobserved, i.e. no transaction is recorded. We assume that a fraction 1

α of spots
are to be observed. For the user the state of the spot may also be unknown, i.e. he
does not know whether it is observed or unobserved.

During the duration of each spot on average m transactions of different users
are observed. Imagine a camera that records the flowing car traffic and recognizes
the license plates. In an hour on a busy street one can observe probably thousands
of cars.

When the user reports his transactions, he has to pay cost d for each reported
transaction. He may also choose to cheat and not report some transactions. For
every transaction where he gets caught doing so he has to pay penalty p (p > d).

3.2 Collusion Strategy

We consider the following strategy. For every spot where the user knows that he
is unobserved, he does not report his transaction. For every spot where the user
knows that he is observed, he, of course, reports, since p > d and he will get
caught. The question is whether he reports spots where the state is unknown to
him.

For this we need to consider how a spot becomes known to be observed or
unobserved. If a user does not report a spot and is charged with a penalty for
that spot, the provider must present some evidence. From this evidence we can
conclude that the spot is observed. If a user does not report a spot and is not

charged with a penalty for that spot, he can likely conclude that the spot is
unobserved.

We assume perfect information sharing about states of spots between all
colluders, i.e. if one party is charged with a penalty all others know the spot is
observed. We furthermore reward users for testing the states of the spots by not
submitting transactions. If a user does not report a spot and is not charged with
a penalty, he marks it as known unobserved and attaches his name to it. From
now on, all other users also do not report this spot and pay a reward e (e < d) to
this user. Clearly, these users will save some money compared to being honest.
For each known observed spot they pay d, for each known unobserved spot they
pay e. Since e < d, this saves them some money.

3.3 Analysis

The utility of reporting a transaction for a spot whose state is unknown is

U =
1

α
p− (1− 1

α
)me. (1)

If U > 0, then the user reports honestly (and will not learn any information).
We can compute the necessary penalty for discouraging dishonesty as

d > e ∧ p > (α− 1)md⇒ U > 0.

If we consider mass surveillance (say m on the order of thousands) and rea-
sonable privacy (say α on the order of hundreds), the penalty p needs to be
significantly (on the order of several hundreds of thousands) higher than the
cost d for a transaction. Loosely speaking, this is roughly equivalent to a life
sentence for getting caught riding on the bus without a ticket. Otherwise, it is
rational to collude and cheat in our model.

Another solution to this problem is to observe every spot and transaction
(α = 1). This complete surveillance incentivizes honesty, but completely re-
moves any privacy. The transactions of the user are known anyway, such that he
does not need to report them in a privacy-preserving way, i.e. even the privacy-
preserving measures are led ad absurdum. Our solution preserves privacy, but
does single user privacy-preserving spot checking, i.e. m = 1. Surveillance moni-
tors should still be at every spot, i.e. every spot is potentially observed, but the
spot checking is random and cannot be forced.

Of course, the toll service provider could randomize spot checking by himself,
but the user would have no guarantee and it is more economical for the provider
to observe all spots. We eliminate this option of mass surveillance by proven
privacy guarantees for the users.

4 Privacy-Preserving Spot Checking

We have a user who needs to be randomly spot checked. In the spirit of zero-
knowledge proofs3 we call him prover P . We have a provider who needs to
perform the spot checking. We call him the verifier V .

P : s, SK,PK

V : t
Π−→

P :

V : z = s− t
if z = 0 : PK

Fig. 1. Black-Box Protocol Π for Privacy-Preserving Spot Checking

Privacy-preserving spot checking is a protocolΠ between P and V . P ’s inputs
to Π are a secret key SK, a public identifier PK and a collection of random
coins s. V ’s inputs to Π are random coins t. V ’s outputs is whether z = s−t = 0.
If z = 0, V obtains the public identifier PK of the prover; otherwise, he obtains
nothing more. P obtains no output – not even whether z = 0. Figure 1 displays
the black-box input and output behavior of protocol Π.

4.1 Setup and Registration

There is a separate registration and verification phase. Each prover chooses a
secret key SK or has it chosen for him by some authority. He then computes the
public identifier PK.

We operate in some finite group G of prime order. Let v be the secret key.
Then the public identifier is gv. Clearly, we can assume that it is difficult to
compute the secret key from the public identifier due to the hardness of the
discrete logarithm problem. Since we only rely on the confidentiality of the secret
key for authentication, we do not need any secure hardware in constructing our
device.

3 Our protocol is not a full-fledged zero-knowledge protocol, but more efficient.

Input P : (uniformly random) r, (secret key) v
Input V : (uniformly random) a
Output P : −
Output V : (public identifier) gv, accept/reject

P → V : gv, gr

V → P : a
P → V : r + av

Fig. 2. Protocol 1: Standard Schnorr Identification

The authority registers the personal identity of the prover along with public
identifier gv. Then, whenever presented with gv the authority can personally
identify the prover. Moreover, the authority can detect forged spot checking
devices, if there is no record for a presented public identifier.

4.2 Security Properties

We demand a number of security properties from our privacy-preserving spot
checking protocol.

Authenticity: In case z = 0, i.e. the verifier obtains public identifier PK,
the prover cannot have produced PK without knowing the corresponding secret
key SK. Hence, the prover is authenticated. We formalize this security notion
equivalent to the soundness notion of zero-knowledge protocols. Let EP (PK) be
an extractor that given rewinding access to P extracts the secret key SK from
P given that z = 0 and the public identifier PK has been revealed. We say a
protocol is authentic, if

P
Π←→ V : z = 0, PK ⇒ 1− Pr[EP (PK) = SK] < 1/poly(κ).

Privacy: In case z 6= 0, i.e. the verifier does not obtain PK, the verifier cannot
extract any information about the identity of the prover from the protocol. We
formalize this security notion equivalent to zero-knowledge. Let S(s, t)P be a
simulator of the protocol view of the verifier – the messages of P – in case

s−t 6= 0. We denote computational indistinguishability as
cind∼ . We say a protocol

is private, if

SP (s, t)
cind∼ ΠP

s−t6=0.

Fairness: Let V (Π) denote the verifier’s output from the protocol, i.e. whether
the prover cheated. The verifier V should only be able to force the case z = 0
with probability less than 1

α + 1
poly(κ) . The prover P should only be able to force

the case z 6= 0 with probability less than 1− 1
α + 1

poly(κ) without being detected.

Let AV and AP be the adversary taking the role of the verifier and prover,
respectively. We say a protocol is fair, if

Pr[P
Π←→ AV : z = 0] <

1

α
+ 1/poly(κ)

Pr[AP Π←→ V : z 6= 0, V (Π) = 1] < 1− 1

α
+ 1/poly(κ).

Reverse Unobservability: The prover P should not learn whether z = 0,
i.e. whether he was observed or not. Let SV be a simulator of the protocol view
of the prover – the messages of V . We say a protocol is reverse unobservable, if

SV cind∼ ΠV .

Input P : (uniformly random) r, (uniformly random) s : 0 ≤ s < α, (secret key) v
Input V : (uniformly random) t : 0 ≤ t < α
Output P : z = s− t
Output V : z = s− t, if z = 0 : (public identifier) gv, accept/reject

P → V : Commit(s), Commit(gv), Commit(gr), r +H(gr)v
V → P : t
P → V : Open(s)
P → V : if z = s− t = 0 : Open(gv), Open(gr)

Fig. 3. Protocol 2: Schnorr Identification with Fair Coin Flip

4.3 Protocol

We present the protocol in incremental steps in order to show the necessity and
effect of individual messages. Let g denote a group generator. We begin with a
regular Schnorr identification protocol [29] in Figure 2.

The verifier accepts if gr+av = (gv)agr, else he rejects. Clearly, this already
achieves authenticity, since it is a standard Schnorr identification protocol. We
can construct an extractor in the usual way.

Theorem 1. Protocol 1 is authentic.

Proof. The extractor proceeds as follows. It waits for the prover to send gr.
Then, it first sends a1 and waits for r+ a1v. Second, it rewinds P to the second
protocol step and sends a2. From r + a1v and r + a2v, it computes v. Since
the probability of randomly choosing a valid public identifier is negligible, the
verifier can also verify the authenticity.

The protocol can be made completely non-interactive using the weak Fiat-
Shamir heuristic [8]. The challenge a is then computed using a collision-resistant
hash function H(gr).

Protocol 1 so far does not include a random choice, i.e. the identity of P is
always revealed. The verifier receives gv in the protocol. We now modify Protocol
1 to obtain Protocol 2. Here we incorporate a fair flip of a coin with probability
Pr[coin = 0] = 1/α (and the Fiat-Shamir heuristic). Note that r + av does
not reveal the public identifier gv, if also gr is unknown. Therefore the prover
commits to gv and gr using a cryptographic commitment scheme and only opens
if the coin turns up z = 0.

A cryptographic commitment scheme consists of two operations:

– γ = Commit(x, c): A commitment γ to x using the random coins c.
– Open(γ) = x, c: An opening of the commitment revealing the value x and

the random coins c.

A cryptographic commitment scheme enjoys two properties:

– Binding: The probability that one can successfully open to a different x′ is
negligible.

– Blinding: The probability to compute x from γ is negligible.

A possible commitment scheme is that by Pedersen [25], but in practical
implementations one can use, e.g. HMAC (secure in the random oracle model).
For clarity of the description we leave out the random coins in the description
of the commitment of the protocol, i.e. we write Commit(x) and Open(x). The
protocol proceeds as in Figure 3.

Theorem 2. Protocol 2 is private.

Proof. In case z 6= 0, the verifier receives the following messages Commit(s),
Commit(gv), Commit(gr), r + H(gr)v and Open(s). The simulator proceeds
as follows. It chooses random s and the corresponding coins and computes
Commit(s). It can already simulate two messages. It simulates Commit(gv)
and Commit(gr) using two random commitments, since the commitments are
never opened and blinding. It simulates r+H(gr)v using a random value, since
gr is unknown and hence H(gr) is pseudo-random.

Theorem 3. Protocol 2 is fair.

Proof. The protocol embeds a regular fair coin flip. The prover first chooses and
commits to its value s and at the end of the protocol he opens the commitment.
Due to the binding property of commitments, he must be honest or get caught,
because either the commitment is not correctly opened or he chose an invalid
value. He can only achieve z 6= 0 when s 6= t or when he opens the commitment
to a different value (in [0, α − 1]). Hence the prover cannot force z 6= 0 with
probability higher than 1− 1

α + negl(κ).
The verifier chooses and sends his value t after the choice of s. He must do so

without knowledge of s, since the commitment is blinding. He can only achieve
z = 0 when t = s and he has no influence on s. Hence, he cannot force z = 0
with probability higher than 1

α .
Note that the previous statement also holds when t is encrypted, since an

invalid encryption of t can only achieve z 6= 0.

The problem with this protocol is that the prover still learns the outcome
of the fair coin flip, i.e. he knows whether he is being observed. In our scenario
this leads to the problem that he can now easily choose which transactions to
report, since he knows all observed spots. We therefore introduce a technique we
call blind decommitment where the prover opens (decommits) his commitment
without knowing whether he does that. The decommitment is probabilistic and
opening occurs only with probability 1

α , but the prover cannot influence this
probability nor can he determine the type of event – decommitment or not.

We use a semantically secure and additively homomorphic encryption scheme,
e.g. Paillier’s [24], for this purpose. Let EV () denote the encryption in this homo-
morphic scheme under the verifier’s key and DV () the corresponding decryption.
Then the following homomorphism properties hold:

Input P : (uniformly random) r, (uniformly random) u1, u2

(uniformly random) s : 0 ≤ s < α, (secret key) v
Input V : (uniformly random) t : 0 ≤ t < α
Output P : −
Output V : z = s− t, z = 0 : (public identifier) gv, accept/reject

P → V : Commit(s), Commit(gv), Commit(gr), r +H(gr)v
V → P : EV (−t)
P → V : Open(s), EV ((s− t)u1 + “Open(gv)′′), EV ((s− t)u2 + “Open(gr)′′)

Fig. 4. Protocol 3: Schnorr Identification with Fair Coin Flip and Blind Decommitment

DV (EV (x)EV (y)) = x+ y

DV (EV (x)y) = xy.

The verifier sends its random value t encrypted and the prover computes the
decommitment homomorphically. We denote “Open(x)” as the encoding in G of
the opening of x for homomorphic encryption. The prover needs to ensure that
in case z 6= 0 the decommitment is safely blinded, i.e. using sufficient random-
ness although α is small. In case z = 0, the verifier can check the validity of the
authentication trace and hence the correctness of the homomorphic computa-
tion. As a consequence we do not need verifiable encryption by the prover. The
protocol proceeds as in Figure 4.

Theorem 4. Protocol 3 is reverse unobservable.

Proof. The prover only receives one message EV (−t). The simulator simulates
this message using a random ciphertext due to the semantic security of the
encryption scheme.

If z 6= 0, then the terms (s− t)u1 and (s− t)u2 are independently uniformly
random, since u1 and u2 are independently uniformly random. Hence, we can
simulate these messages using randomly chosen ciphertexts and the commit-
ments are never opened. The other messages are as in the proof of Theorem 2.
Note that we employ a weaker notion of fairness. The verifier could force z 6= 0,
since he could choose t > α, but that does not seem rational in our scenario and
is hence not included in the security definitions. As a consequence we do not
need verifiable encryption by the verifier.

The prover’s ciphertext can be checked for correctness after decryption, if
z = 0, since it then needs to contain a correct authentication trace. If z 6= 0,
the plaintext is random and must not be checkable. Since the verifier receives s
and can check this against the commitment, he reliably knows z and can hence
decide whether to check the plaintext. Consequently, also the prover does not
need use verifiable encryption.

P → V : MAC(s,K1),MAC(vP,K2),MAC(rP,K3), r +H(rP)v
V → P : wP,−tP + wV
P → V : s,K1, u(wP + yP), u(−tP + wV + sP + yV) +K4,ENCK4(vP|K2|rP|K3)

Fig. 5. Protocol 4: Optimized Protocol 3 in the EC Setting

4.4 Optimization

There are a few tricks we can use to make the protocol more efficient. First,
we translate our Protocol 3 to the elliptic-curve (EC) setting and employ the
EC-ElGamal additively homomorphic encryption scheme [6]. This way, we can
avoid computationally expensive modular exponentiation (e.g. required by the
Paillier scheme) on the prover-side, which potentially uses a device with limited
computation resource. Let P be a point on an elliptic curve over a finite field and
that generates the required cyclic subgroup. The prover’s public identifier is then
translated into Q = vP for some random v and gr is represented as rP. Hence,
let V = xP be the public encryption key of V , where x is the corresponding
secret key, EC-ElGamal encryption of −t is of the form (wP,−tP + wV) for a
randomly chosen w. In the last step of the protocol, P encrypts s in the form of
(yP, sP + yV) for a random y, homomorphically adds the ElGamal encryption
of s to the encryption of −t from V , and blinds the sum with u and adds an
encoding K4 as a point on the elliptic curve of some random symmetric key K4.
This symmetric key is used to encrypt and protect the openings in a symmetric
authenticated encryption mode like GCM. The complete protocol is illustrated
in Figure 5.

Moreover, we notice that Commit(rP) does not need any random coins. It
has sufficient entropy. Hence, Open(rP) can be just rP. Also, we do not need
to encrypt s, but simply use a MAC that takes as input s and a freshly chosen
random seed K.

We note that although EC-ElGamal decryption can be very slow (on the
orders of seconds and minutes) even for small messages [12], such an operation
is not required in our protocol. Given s (in the last step of the protocol), the
verifier checks if z = 0. If so (s = t), V recovers K using its secret key v (to
compute the term uwV+uyV). Otherwise, it simply does nothing and terminates
the protocol.

4.5 Efficiency Analysis

We now analyze the computational and communication overhead of our EC-
based protocol. We use a standard 160-bit elliptic curve secp160r1, which offers
roughly the same security level as 1024-bit RSA. It is known that the dom-
inant cost in EC-based cryptographic operations is point multiplications [10].
On the other hand, modular addition, modular multiplication, SHA-1 and AES
operations are roughly three to four orders of magnitude faster than a point

Table 1. Estimated computation time (in ms) for the prover and the verifier

Offline Online Total

Prover
– smart card 1075 654 1729
– smart phone 404 246 650

Verifier (z 6= 0) (z = 0) (z 6= 0) (z = 0) (z 6= 0) (z = 0)
– auditor 0.98 0.98 0 0.9 0.98 1.88

multiplication evaluation [31]. Hence, in our analysis, we consider only elliptic
curve point multiplication (such as r ·P) and elliptic curve double multiplication
(such as r · P + w · V). Also, we believe that our analysis below represents a
fairly conservative estimate for the amount of computational cost required by
our protocol, since the actual processors used in real life would likely to be more
powerful.

Prover We consider two popular embedded microprocessors: 8-bit Atmel AT-
mega AVR and 32-bit ARM Cortex-M0+ microprocessors. The former represents
a low-end contactless smart card (potentially used as an e-ticket in public trans-
portation [17]), while the latter represents a low-end smart phone (potentially
used as an OBU for toll collection [21]) in comparison with today’s fast-evolving
phone market with increasingly more powerful devices emerging.

According to recent implementations by Wenger et al. [32], the computation
time required for a point multiplication is 327 ms with the 8-bit microprocessor
and 123 ms with the 32-bit microprocessor; while a double multiplication takes
roughly 421 ms and 158 ms, respectively. Their implementations are optimized
based on set-instruction modification. The measurements are taken at a clock
rate of 10 MHz. From these, we can estimate that the computation time required
by the prover for one protocol run is roughly 1.7 s on a smart card and roughly
0.7 s on a smart phone. With (offline) pre-computation of some parameters used
in the protocol, the computation time can be reduced by almost 60% for both
platforms. The computational cost of our protocol is summarized in Table 1.

In terms of communication cost, the prover sends two messages to the veri-
fier during each protocol run. With our choice of elliptic curve, each message’s
length is only approximately 3×160 = 480 bits, and hence, the total bandwidth
requirement is 960 bits per protocol run.

Verifier We assume that the verifier is an auditor (local government), who
will perform spot checks, and has much higher computational resources than
the prover. A point multiplication and a double multiplication in the EC setting
take 0.45 ms and 0.53 ms, respectively, using MIRACL compiled with GCC (with
standard level-2 compiler optimization) and running on an Intel Single Core i5
520M 64-bit processor at 2.40 GHz. Given this, we estimate that in a protocol

run, the computation time taken by the verifier is roughly 0.98 ms when z 6= 0,
and 1.88 ms when z = 0.

On the other hand, the communication overhead incurred by the verifier is
minimal. It sends out only one message of 2× 160 = 320 bits.

In summary, our performance analysis shows that our protocol is very ef-
ficient using practical parameters. Using the toll collection scenario, assuming
that the prover can pre-compute the necessary parameters before approaching a
surveillance monitor4, and without considering the communication latency be-
tween the verifier and the prover (via an OBU), our protocol can perform spot
checks on up to roughly 4 vehicles in a second. We reiterate that our estimate is
somewhat conservative. Newer ARM-based microprocessors and smart phones
are likely to have even better computing speed.

Our protocol is designed to be lightweight. We omit verifying the recorded
time and location by including a trustworthy GPS sensor and clock on the spot
checking device. Hence, this information by the verifier is trusted. The verifier
is not trusted to observe the privacy rights of the prover. Our protocol ensures
this.

4.6 Rate Limiting

The frequency at which the spot checking identification device can be queried
needs to be rate limited. Since we do not use any verifier authentication, any-
one can query the device potentially tracking the user. If we assume a time τ
between any two protocol initiations, we can estimate the average time tid until
a successful identification in a non-stop querying attack as

tid =
α

2
τ

This delay τ needs to be traded against potential denial-of-service attacks.
A driver (in the toll collection example) can be delayed until the spot checking
protocol has been completed. Hence, a malicious reader can read the device just
before a spot checking point and delay the driver and traffic. We estimate values
between 5 and 30 seconds to be good choices for τ .

Another solution to this problem would be reader authentication. The reader
could sign his message using a public key. The verification of the signature on the
spot checking device would require at least one ECC multiplication for a fixed
public key or at least two for public key certificates plus certificate handling. We
opt against this design choice rather increasing the speed of our protocol.

4.7 Disposal

A simple idea of the prover to evade spot checking could be to remove or damage
the spot checking device. Fortunately, this is very simple to detect: at any time,

4 The time required to travel from one spot to another spot, i.e. the distance between
two surveillance monitors, would be abundant for our pre-computation purpose.

the verifier initiates a protocol, it is not completed by the prover. The security
guarantees of our protocol design ensure that if the protocol is completed a valid
public identifier is revealed with probability 1/α. Hence, a simple physical strat-
egy can be employed to pursue provers without working spot checking devices.
For example, a prover could not be allowed to proceed at a gate, photographed
in flowing traffic as in many US toll collection sites or even chased by the police.
Once caught, the police can even verify that the device is not working properly
by re-running the protocol.

5 Example Application

For completeness, we give a sketch on how our privacy-preserving spot checking
approach can be integrated with the Milo protocol for electronic toll collec-
tion [22].

We first describe a simplified version of the original Milo protocol5 between
the driver, toll service provider and the toll charger (local government):

Setup: The OBU generates the necessary key material and publishes the
unique identifier id, including a signing key. The toll service provider and the
toll charger each stores a copy of the OBU’s verification key and its corresponding
id. Hidden cameras are installed at random road segments and operated by the
toll charger.

Payment Protocol: As the driver travels, the OBU picks up location (where)
and time (when) information. The OBU then calculates the toll fare d for each
road segment based on the received information. It also computes a commit-
ment to the d value and encrypts the (where, when, d) tuple.6 At the end of
each billing month, the OBU transmits the billing information, which comprises
its id and a set of signed, encrypted and committed (where, when, d) tuples, to
the toll service provider. The latter verifies the committed toll fares via zero-
knowledge proofs; if the check succeeds, it forwards the billing information to
the toll charger.

Audit Protocol: For each captured vehicle via a hidden camera, the toll
charger identifies the corresponding id and stores the (id, where, when) tuple. At
month’s end and upon receiving an audit request from the toll service provider
(with the relevant encrypted billing information submitted by the driver), the
toll charger randomly selects n tuples where the corresponding id matches the
identifier for the driver to be audited. It then requests for the decryption keys
corresponding to the selected (id, where, when) tuples in an oblivious manner
(otherwise locations of the cameras would be revealed to the driver.) Upon de-
cryption, the toll charger is convinced that the driver had behaved honestly only
if the committed toll fares are correct for the checked road segments.

5 Many details of the Milo protocol have been omitted. See [22] for a complete de-
scription.

6 Anonymous identity-based encryption is used here. The encryption key for each
record is based on the (where, when) tuple.

Using our privacy-preserving spot checking technique, some level of user pri-
vacy can be preserved,7 while ensuring cheating drivers can be detected through
the above described audit protocol. This requires the following small modifica-
tion. Instead of using cameras, the surveillance monitors here are readers in-
stalled at gantries or booths setup along the roadside for all segments within
an audit area. Moreover, we assume each vehicle uses an OBU to interact with
the spot checking reader. Whenever the reader detects an approaching vehicle, it
runs our proposed spot checking protocol. For each protocol run and if z = 0, the
reader recovers and transmits the public identifier PK of the interacted OBU
to a centralized server managed by the toll charger; otherwise, the reader sends
nothing to the server. The rest of the Milo protocol remains the same.

There are two advantages for using our privacy-preserving spot checking
mechanism. First, the toll charger provably sees only a fraction of the user’s
traveled road segments and spot checking is done randomly, i.e. the toll charger
has no influence to which road segments it wants to check. That is our protocol
actually preserves privacy and still discourages dishonest users from cheating by
preventing any form of information sharing. Second, our approach potentially has
lower operation cost. Particularly, the toll charger stores records associated with
only a small fraction of the vehicles detected by the reader. Spot checking via
cameras requires much higher storage and processing overhead. This is because
each camera typically stores information of all vehicles that it captures.

6 Conclusions

In this paper we investigate collusion attacks on privacy-preserving billing or
accounting systems. We show that in order to deter cheating all transactions
in the cyber-physical world need to be observed or extreme penalties need to
be imposed. This is not a sustainable choice for our society. We then present
a privacy-preserving spot checking protocol that allows privacy-preserving ob-
servations in public spaces and can be used to enforce honesty in billing while
still preserving privacy. For this we introduce a new variant of oblivious transfer:
blind decommitment. We show that it can be efficiently implemented on weak
computational devices such as smart cards or smart phones using a number of
optimizations.

Our technique allows a socially acceptable trade-off between necessary ob-
servation (in public spaces) and privacy. We conclude that it is feasible to build
cyber-physical billing systems that are economically dependable and privacy-
preserving at the same time.

References

1. W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital
goods. Advances in Cryptology – Proceedings of EUROCRYPT, 2001.

7 We note that perfect privacy implies inability to detect dishonest users.

2. J. Balasch, A. Rial, C. Troncoso, B. Preneel, I. Verbauwhede, and C. Geuens.
PrETP: privacy-preserving electronic toll pricing. In Proceedings of the 19th
USENIX Security Symposium, 2010.

3. G. Brassard, C. Crépeau, and J. Robert. All-or-nothing disclosure of secrets. Ad-
vances in Cryptology – Proceedings of CRYPTO, 1986.

4. O. Catrina, F. Kerschbaum. Fostering the uptake of secure multiparty computa-
tion in e-commerce. In Proceedings of the International Workshop on Frontiers in
Availability, Reliability and Security (FARES), 2008.

5. J. Dreier, and F. Kerschbaum. Practical privacy-preserving multiparty linear pro-
gramming based on problem transformation. In Proceedings of the 3rd IEEE In-
ternational Conference on Privacy, Security, Risk and Trust (PASSAT), 2011.

6. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. Advances in Cryptology – Proceedings of CRYPTO, 1984.

7. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Communications of the ACM 28(6), 1985.

8. A. Fiat, and A. Shamir. How to prove yourself: Practical solutions to identification
and signature Pproblems. Advances in Cryptology – Proceedings of CRYPTO, 1986.

9. M. Green and S. Hohenberger. Blind identity-based encryption and simulatable
oblivious transfer. Advances in Cryptology – Proceedings of ASIACRYPT, 2007.

10. N. Gura, A. Patel, A. Wander, H. Eberle, and S.C. Shantz. Comparing elliptic
curve cryptography and RSA on 8-bit CPUs. In Proceedings of the 6th International
Workshop on Cryptographic Hardware and Embedded Systems (CHES), 2004.

11. T.S. Heydt-Benjamin, H.-J. Chae, B. Defend, and K. Fu. Privacy for Public Trans-
portation. In Proceedings of the 6th Workshop on Privacy Enhancing Technologies
(PET), 2006.

12. Y. Hu. Improving the efficiency of homomorphic encryption schemes. Ph.D Thesis,
Worcester Polytechnic Institute, 2013.

13. F. Kerschbaum. Building a privacy-preserving benchmarking enterprise system.
Enterprise Information Systems 2(4), 2008.

14. F. Kerschbaum. A verifiable, centralized, coercion-free reputation system. In Pro-
ceedings of the 8th ACM Workshop on Privacy in the Electronic Society (WPES),
2009.

15. F. Kerschbaum. Outsourced private set intersection using homomorphic encryp-
tion. In Proceedings of the 7th ACM Symposium on Information, Computer and
Communication Security (ASIACCS), 2012.

16. F. Kerschbaum, D. Dahlmeier, A. Schrpfer, and D. Biswas. On the practical impor-
tance of communication complexity for secure multi-party computation protocols.
In Proceedings of the 24th ACM Symposium on Applied Computing (SAC), 2009.

17. F. Kerschbaum, H.W. Lim, and I. Gudymenko. Privacy-preserving billing for e-
ticketing systems in public transportation. In Proceedings of the 12th Annual ACM
Workshop on Privacy in the Electronic Society (WPES), 2013.

18. F. Kerschbaum, and O. Terzidis. Filtering for private collaborative benchmarking
In Proceedings of the International Conference on Emerging Trends in Information
and Communication Security (ETRICS), 2006.

19. F. Kerschbaum, and N. Oertel. Privacy-preserving pattern matching for anomaly
detection in RFID anti-counterfeiting. In Proceedings of the 6th Workshop on
RFID Security (RFIDSEC), 2010.

20. J. Kilian. Founding crytpography on oblivious transfer. In Proceedings of the 20th
ACM Symposium on Theory of Computing (STOC), 1988.

21. J. Liu, M. Au, W. Susilo, and J. Zhou. Enhancing location privacy for electric
vehicles (at the right time). In Proceedings of the 17th European Symposium on
Research in Computer Security (ESORICS), 2012.

22. S. Meiklejohn, K. Mowery, S. Checkoway, and H. Shacham. The Phantom Toll-
booth: Privacy-Preserving Electronic Toll Collection in the Presence of Driver Col-
lusion. In Proceedings of the 20th USENIX Security Symposium, 2011.

23. MIRACL – Benchmarks and Subs. Certivox Developer Community. https://

certivox.org/display/EXT/Benchmarks+and+Subs, 2014.
24. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.

Advances in Cryptology – Proceedings of EUROCRYPT, 1999.
25. T.P. Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. Advances in Cryptology – Proceedings of CRYPTO, 1991.
26. R.A. Popa, H. Balakrishnan, and A.J. Blumberg. VPriv: Protecting privacy in

location-based vehicular services. In Proceedings of the 18th USENIX Security
Symposium, 2009.

27. M. Rabin. How to exchange secrets by oblivious transfer. Technical Memo TR–81,
Aiken Computation Laboratory, 1981.

28. A. Sadeghi, I. Visconti, and C. Wachsmann. User privacy in transport systems
based on RFID e-tickets. In Proceedings of the 1st International Workshop on
Privacy in Location-Based Applications (PilBA), 2008.

29. C. Schnorr. Efficient identification and signatures for smart cards. In Advances in
Cryptology – Proceedings of CRYPTO, 1989.

30. A. Schröpfer, F. Kerschbaum, and G. Müller. L1-an intermediate language for
mixed-protocol secure computation. In Proceedings of the 35th IEEE Computer
Software and Applications Conference (COMPSAC), 2011.

31. L. Uhsadel, A. Poschmann, and C. Paar. Enabling full-size public-key algorithms
on 8-bit sensor nodes. In Proceedings of the 4th European Workshop on Security
and Privacy in Ad-hoc and Sensor Networks (ESAS), 2007.

32. E. Wenger, T. Unterluggauer, and M. Werner. 8/16/32 shades of elliptic curve
cryptography on embedded processors. Progress in Cryptology – Proceedings of
INDOCRYPT, 2013.

A Privacy vs. Penalty Analysis

We first analyze the probability of cheating detection with our spot checking
mechanism. We then analyze how much privacy is achieved through our protocol
and the required penalty to discourage users from cheating.

A.1 Variables

Let us assume that an average user would commute for a distance that covers k
spots within a month. At each spot, only a fraction 1

α of users are observed. Here
we regard α as an “privacy indicator”. The higher the value of α, the higher the
level of user (location) privacy can be preserved. Let also C(k) denote the event
when a cheating user is caught (or detected) at least once after having traveled
k spots. (For simplicity, we ignore the cases where a cheating user is detected
more than once within a month.)

A.2 Analysis

Using a probability analysis similar to that of [2, 22], we have

Pr[C(k)] = 1− (1− 1

α
)k (2)

for α ≥ 1 and k ≥ 1. Clearly, when α = 1, there is no privacy; however, the
relevant surveillance monitor will detect any cheating user with probability 1.
On the contrary, the more user privacy we want to preserve, the harder it is for
the surveillance monitor to detect any cheating user. Clearly, users who have
traveled more spots (higher mileage) have higher chances of getting caught if
they cheat. Figure 6 (a) shows that for a user with very low monthly mileage
(k = 10), α needs to be set very low (hence low privacy) between the range of
5 and 10, such that any cheating can be detected with probability 0.8. On the
other extreme, a user with high monthly mileage (k = 200) can still be detected
with high probability (> 0.8) if cheating, while enjoying a higher-level of privacy
(α = 100). For an average user (say k = 100), α needs to be set at most 60 in
order to have probability of cheating detection of at least 0.8.

We now quantify how much penalty p needs to be imposed for a cheating
user to alleviate dishonest behavior. Let d be the toll fare for each traveled spot.
From Equation (1), we have

p(Pr[C(k)])− dk(1− Pr[C(k)]) ≥ ε

where ε is the minimal net loss8 that will incentivize a user to behave honestly.
(Clearly, if the net loss is close to zero, there is little incentive for the user not

8 Here net loss is assumed to be the difference between a fine (penalty) for being
caught cheating and the amount of money that a cheating user would have saved
should her dishonest behavior was not detected.

Fig. 6. (a) The relation between privacy parameter α and the probability Pr[C(k)]
of cheating detection at least once after k spots. (b) The relation between privacy
paramater α and the imposed penalty p for any cheating user.

to cheat.) Setting d = 0.50 USD, ε = 50 USD and k = 100, we can then define
the relation between p and α as

p =
ε+ dk(1− Pr[C(k)])

Pr[C(k)]

=
50 + 0.5(100)(1− Pr[C(k)])

Pr[C(k)]

= 50

(
1 + (1− 1

α)100

1− (1− 1
α)100

)
(3)

It is clear from Equation (3) that p increases when α grows. Figure 6 (b) shows
that for the case of an average user (say k = 100), p grows at a lower rate for
α < 30, but at a much higher rate for α > 30. To achieve a reasonable level
of privacy while ensuring honesty for an average traveler (following our earlier
probability analysis that infers α ≤ 60 and Pr[C(k)] ≥ 0.8 for k = 100), we must
impose penalty of approximately $70 for users who cheat at least once within a
month.

We would like to point out how difficult it is to achieve a similar level of
privacy using mobile cameras. One can think of the following hypothetical mo-
bile camera. If we assume that a mobile camera (mounted on a special-purpose
vehicle) moves in an unpredictable direction at a speed much higher than traffic
and may stay at a specific spot for an unpredictably small amount of time, it
is roughly saying that the camera is installed (fixed) at a location for a small
fraction of time. Still, the mobile camera records a small fraction of users, but
likely more than one as in our case who appear at the location where the camera
is. Moreover, as analyzed by Meiklejohn et al. [22], the operational cost of even
existing mobile cameras is much higher than that of fixed cameras. Their anal-
ysis shows that an audit vehicle costs at least 82, 500 US dollars per year. This
includes the cost for employing a driver, as well as purchasing, operating and
maintaining the audit vehicle. Our approach of spot checking offers more eco-
nomical and fine-grained control (only one is observed) of the levels of cheating
detection and user privacy by adjusting the relevant parameters.

