469 research outputs found

    A Phylogenetic Analysis of the Globins in Fungi

    Get PDF
    BACKGROUND: ALL GLOBINS BELONG TO ONE OF THREE FAMILIES: the F (flavohemoglobin) and S (sensor) families that exhibit the canonical 3/3 ι-helical fold, and the T (truncated 3/3 fold) globins characterized by a shortened 2/2 ι-helical fold. All eukaryote 3/3 hemoglobins are related to the bacterial single domain F globins. It is known that Fungi contain flavohemoglobins and single domain S globins. Our aims are to provide a census of fungal globins and to examine their relationships to bacterial globins. RESULTS: Examination of 165 genomes revealed that globins are present in >90% of Ascomycota and ∟60% of Basidiomycota genomes. The S globins occur in Blastocladiomycota and Chytridiomycota in addition to the phyla that have FHbs. Unexpectedly, group 1 T globins were found in one Blastocladiomycota and one Chytridiomycota genome. Phylogenetic analyses were carried out on the fungal globins, alone and aligned with representative bacterial globins. The Saccharomycetes and Sordariomycetes with two FHbs form two widely divergent clusters separated by the remaining fungal sequences. One of the Saccharomycete groups represents a new subfamily of FHbs, comprising a previously unknown N-terminal and a FHb missing the C-terminal moiety of its reductase domain. The two Saccharomycete groups also form two clusters in the presence of bacterial FHbs; the surrounding bacterial sequences are dominated by Proteobacteria and Bacilli (Firmicutes). The remaining fungal FHbs cluster with Proteobacteria and Actinobacteria. The Sgbs cluster separately from their bacterial counterparts, except for the intercalation of two Planctomycetes and a Proteobacterium between the Fungi incertae sedis and the Blastocladiomycota and Chytridiomycota. CONCLUSION: Our results are compatible with a model of globin evolution put forward earlier, which proposed that eukaryote F, S and T globins originated via horizontal gene transfer of their bacterial counterparts to the eukaryote ancestor, resulting from the endosymbiotic events responsible for the origin of mitochondria and chloroplasts

    The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane

    Get PDF
    Covalent hemoglobin binding to membranes leads to band 3 (AE1) clustering and the removal of erythrocytes from the circulation; it is also implicated in blood storage lesions. Damaged hemoglobin, with the heme being in a redox and oxygen-binding inactive hemichrome form, has been implicated as the binding species. However, previous studies used strong non-physiological oxidants. In vivo hemoglobin is constantly being oxidised to methemoglobin (ferric), with around 1% of hemoglobin being in this form at any one time. In this study we tested the ability of the natural oxidised form of hemoglobin (methemoglobin) in the presence or absence of the physiological oxidant hydrogen peroxide to initiate membrane binding. The higher the oxidation state of hemoglobin (from Fe(III) to Fe(V)) the more binding was observed, with approximately 50% of this binding requiring reactive sulphydryl groups. The hemoglobin bound was in a high molecular weight complex containing spectrin, ankyrin and band 4.2, which are common to one of the cytoskeletal nodes. Unusually, we showed that hemoglobin bound in this way was redox active and capable of ligand binding. It can initiate lipid peroxidation showing the potential to cause cell damage. In vivo oxidative stress studies using extreme endurance exercise challenges showed an increase in hemoglobin membrane binding, especially in older cells with lower levels of antioxidant enzymes. These are then targeted for destruction. We propose a model where mild oxidative stress initiates the binding of redox active hemoglobin to the membrane. The maximum lifetime of the erythrocyte is thus governed by the redox activity of the cell; from the moment of its release into the circulation the timer is set

    Catalases Are NAD(P)H-Dependent Tellurite Reductases

    Get PDF
    Reactive oxygen species damage intracellular targets and are implicated in cancer, genetic disease, mutagenesis, and aging. Catalases are among the key enzymatic defenses against one of the most physiologically abundant reactive oxygen species, hydrogen peroxide. The well-studied, heme-dependent catalases accelerate the rate of the dismutation of peroxide to molecular oxygen and water with near kinetic perfection. Many catalases also bind the cofactors NADPH and NADH tenaciously, but, surprisingly, NAD(P)H is not required for their dismutase activity. Although NAD(P)H protects bovine catalase against oxidative damage by its peroxide substrate, the catalytic role of the nicotinamide cofactor in the function of this enzyme has remained a biochemical mystery to date. Anions formed by heavy metal oxides are among the most highly reactive, natural oxidizing agents. Here, we show that a natural isolate of Staphylococcus epidermidis resistant to tellurite detoxifies this anion thanks to a novel activity of its catalase, and that a subset of both bacterial and mammalian catalases carry out the NAD(P)H-dependent reduction of soluble tellurite ion (TeO(3) (2−)) to the less toxic, insoluble metal, tellurium (Te°), in vitro. An Escherichia coli mutant defective in the KatG catalase/peroxidase is sensitive to tellurite, and expression of the S. epidermidis catalase gene in a heterologous E. coli host confers increased resistance to tellurite as well as to hydrogen peroxide in vivo, arguing that S. epidermidis catalase provides a physiological line of defense against both of these strong oxidizing agents. Kinetic studies reveal that bovine catalase reduces tellurite with a low Michaelis-Menten constant, a result suggesting that tellurite is among the natural substrates of this enzyme. The reduction of tellurite by bovine catalase occurs at the expense of producing the highly reactive superoxide radical

    Studies on the xanthine oxidase activity of mammalian cells

    Full text link
    Xanthine oxidase in man is confined to but a few tissues and is absent from cultured cell strains. In rodents, however, the enzyme is more widely distributed among the tissues and can be demonstrated in most cell lines. Rodents possess the enzyme uricase and are therefore able to carry purine catabolism one step further than man. Preliminary results suggest that uricase is restricted to but a few rodent tissues and is absent from cultured rodent cells. Hence it may be that in each species only the final enzyme of purine catabolism is tissue restricted. In other experiments, mammalian cells were grown in the presence of compounds known to induce xanthine oxidase in a eukaryotic fungus (Aspergillus nidulans) . These compounds did not induce the enzyme in mammalian cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44184/1/10528_2004_Article_BF00487339.pd

    A molecular analysis of desiccation tolerance mechanisms in the anhydrobiotic nematode Panagrolaimus superbus using expressed sequenced tags

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some organisms can survive extreme desiccation by entering into a state of suspended animation known as anhydrobiosis. <it>Panagrolaimus superbus </it>is a free-living anhydrobiotic nematode that can survive rapid environmental desiccation. The mechanisms that <it>P. superbus </it>uses to combat the potentially lethal effects of cellular dehydration may include the constitutive and inducible expression of protective molecules, along with behavioural and/or morphological adaptations that slow the rate of cellular water loss. In addition, inducible repair and revival programmes may also be required for successful rehydration and recovery from anhydrobiosis.</p> <p>Results</p> <p>To identify constitutively expressed candidate anhydrobiotic genes we obtained 9,216 ESTs from an unstressed mixed stage population of <it>P. superbus</it>. We derived 4,009 unigenes from these ESTs. These unigene annotations and sequences can be accessed at <url>http://www.nematodes.org/nembase4/species_info.php?species=PSC</url>. We manually annotated a set of 187 constitutively expressed candidate anhydrobiotic genes from <it>P. superbus</it>. Notable among those is a putative lineage expansion of the <it>lea </it>(late embryogenesis abundant) gene family. The most abundantly expressed sequence was a member of the nematode specific <it>sxp/ral-2 </it>family that is highly expressed in parasitic nematodes and secreted onto the surface of the nematodes' cuticles. There were 2,059 novel unigenes (51.7% of the total), 149 of which are predicted to encode intrinsically disordered proteins lacking a fixed tertiary structure. One unigene may encode an exo-β-1,3-glucanase (GHF5 family), most similar to a sequence from <it>Phytophthora infestans</it>. GHF5 enzymes have been reported from several species of plant parasitic nematodes, with horizontal gene transfer (HGT) from bacteria proposed to explain their evolutionary origin. This <it>P. superbus </it>sequence represents another possible HGT event within the Nematoda. The expression of five of the 19 putative stress response genes tested was upregulated in response to desiccation. These were the antioxidants <it>glutathione peroxidase, dj-1 </it>and <it>1-Cys peroxiredoxin</it>, an <it>shsp </it>sequence and an <it>lea </it>gene.</p> <p>Conclusions</p> <p><it>P. superbus </it>appears to utilise a strategy of combined constitutive and inducible gene expression in preparation for entry into anhydrobiosis. The apparent lineage expansion of <it>lea </it>genes, together with their constitutive and inducible expression, suggests that LEA3 proteins are important components of the anhydrobiotic protection repertoire of <it>P. superbus</it>.</p
    • …
    corecore