698 research outputs found

    Direction and symmetry transition of the vector order parameter in topological superconductors CuxBi2Se3

    Get PDF
    Topological superconductors have attracted wide-spreading interests for the bright application perspectives to quantum computing. Cu0.3Bi2Se3 is a rare bulk topological superconductor with an odd-parity wave function, but the details of the vector order parameter d and its pinning mechanism are still unclear. Here, we succeed in growing CuxBi2Se3 single crystals with unprecedented high doping levels. For samples with x = 0.28, 0.36 and 0.37 with similar carrier density as evidenced by the Knight shift, the in-plane upper critical field Hc2 shows a two-fold symmetry. However, the angle at which the Hc2 becomes minimal is different by 90° among them, which indicates that the d-vector direction is different for each crystal likely due to a different local environment. The carrier density for x = 0.46 and 0.54 increases substantially compared to x ≤ 0.37. Surprisingly, the in-plane Hc2 anisotropy disappears, indicating that the gap symmetry undergoes a transition from nematic to isotropic (possibly chiral) as carrier increases

    Phase transitions in crowd dynamics of resource allocation

    Get PDF
    We define and study a class of resources allocation processes where gNgN agents, by repeatedly visiting NN resources, try to converge to optimal configuration where each resource is occupied by at most one agent. The process exhibits a phase transition, as the density gg of agents grows, from an absorbing to an active phase. In the latter, even if the number of resources is in principle enough for all agents (g<1g<1), the system never settles to a frozen configuration. We recast these processes in terms of zero-range interacting particles, studying analytically the mean field dynamics and investigating numerically the phase transition in finite dimensions. We find a good agreement with the critical exponents of the stochastic fixed-energy sandpile. The lack of coordination in the active phase also leads to a non-trivial faster-is-slower effect.Comment: 7 pages, 7 fig

    Wide-Field Infrared Imaging Polarimetry of the NGC 6334 Region: A Nest of Infrared Reflection Nebulae

    Full text link
    We report the detection of eighteen infrared reflection nebulae (IRNe) in the JJ, HH, & KsKs linear polarimetric observations of the NGC 6334 massive star-formation complex, of which 16 IRNe are new discoveries. Our images cover ∼\sim180 square arcminutes, one of the widest near-infrared polarization data in star-formation regions so far. These IRNe are most likely associated with embedded young OB stars at different evolutionary phases, showing a variety of sizes, morphologies, and polarization properties, which can be divided into four categories. We argue the different nebula characteristics to be a possible evolutionary sequence of circumstellar structures around young massive stars.Comment: 4 pages, 1 figur

    N2H+ Observations of Molecular Cloud Cores in Taurus

    Full text link
    N2H+ observations of molecular cloud cores in Taurus with the Nobeyama 45 m radio telescope are reported. We compare ``cores with young stars'' with ``cores without young stars''. The differences in core radius, linewidth, and core mass are small. Linewidth is dominated by thermal motions in both cases. N2H+ maps show that the intensity distribution does not differ much between cores without stars and those with stars. This is in contrast to the result previously obtained in H13CO+ toward Taurus molecular cloud cores. Larger degree of depletion of H13CO+ in starless cores will be one possible explanation for this difference. We studied the physical state of molecular cloud cores in terms of ``critical pressure'' for the surface (external) pressure. There is no systematic difference between starless cores and cores with stars in this analysis. Both are not far from the critical state for pressure equilibrium. We suggest that molecular cloud cores in which thermal support is dominated evolve toward star formation by keeping close to the critical state. This result is in contrast with that obtained in the intermediate-mass star forming region OMC-2/3, where molecular cloud cores evolve by decreasing the critical pressure appreciably. We investigate the radial distribution of the integrated intensity. Cores with stars are found to have shallow (-1.8 to -1.6) power-law density profiles.Comment: 19 pages, 5 figure

    Orbital characterization of GJ1108A system, and comparison of dynamical mass with model-derived mass for resolved binaries

    Full text link
    We report an orbital characterization of GJ1108Aab that is a low-mass binary system in pre-main-sequence phase. Via the combination of astrometry using adaptive optics and radial velocity measurements, an eccentric orbital solution of ee=0.63 is obtained, which might be induced by the Kozai-Lidov mechanism with a widely separated GJ1108B system. Combined with several observed properties, we confirm the system is indeed young. Columba is the most probable moving group, to which the GJ1108A system belongs, although its membership to the group has not been established. If the age of Columba is assumed for GJ1108A, the dynamical masses of both GJ1108Aa and GJ1108Ab (Mdynamical,GJ1108Aa=0.72±0.04M⊙M_{\rm dynamical,GJ1108Aa}=0.72\pm0.04 M_{\odot} and Mdynamical,GJ1108Ab=0.30±0.03M⊙M_{\rm dynamical,GJ1108Ab}=0.30\pm0.03 M_{\odot}) are more massive than what an evolutionary model predicts based on the age and luminosities. We consider the discrepancy in mass comparison can attribute to an age uncertainty; the system is likely older than stars in Columba, and effects that are not implemented in classical models such as accretion history and magnetic activity are not preferred to explain the mass discrepancy. We also discuss the performance of the evolutionary model by compiling similar low-mass objects in evolutionary state based on the literature. Consequently, it is suggested that the current model on average reproduces the mass of resolved low-mass binaries without any significant offsets.Comment: Accepted in Ap

    Direct Imaging of Fine Structures in Giant Planet Forming Regions of the Protoplanetary Disk around AB Aurigae

    Full text link
    We report high-resolution 1.6 \micron polarized intensity (PIPI) images of the circumstellar disk around the Herbig Ae star AB Aur at a radial distance of 22 AU (0."150."15) up to 554 AU (3.""85), which have been obtained by the high-contrast instrument HiCIAO with the dual-beam polarimetry. We revealed complicated and asymmetrical structures in the inner part (≲\lesssim140 AU) of the disk, while confirming the previously reported outer (rr ≳\gtrsim200 AU) spiral structure. We have imaged a double ring structure at ∼\sim40 and ∼\sim100 AU and a ring-like gap between the two. We found a significant discrepancy of inclination angles between two rings, which may indicate that the disk of AB Aur is warped. Furthermore, we found seven dips (the typical size is ∼\sim45 AU or less) within two rings as well as three prominent PIPI peaks at ∼\sim40 AU. The observed structures, including a bumpy double ring, a ring-like gap, and a warped disk in the innermost regions, provide essential information for understanding the formation mechanism of recently detected wide-orbit (rr >>20 AU) planets.Comment: 12 pages, 3 figure

    SEEDS direct imaging of the RV-detected companion to V450 Andromedae, and characterization of the system

    Full text link
    We report the direct imaging detection of a low-mass companion to a young, moderately active star V450 And, that was previously identified with the radial velocity method. The companion was found in high-contrast images obtained with the Subaru Telescope equipped with the HiCIAO camera and AO188 adaptive optics system. From the public ELODIE and SOPHIE archives we extracted available high-resolution spectra and radial velocity (RV) measurements, along with RVs from the Lick planet search program. We combined our multi-epoch astrometry with these archival, partially unpublished RVs, and found that the companion is a low-mass star, not a brown dwarf, as previously suggested. We found the best-fitting dynamical masses to be m1=1.141−0.091+0.037m_1=1.141_{-0.091}^{+0.037} and m2=0.279−0.020+0.023m_2=0.279^{+0.023}_{-0.020} M⊙_\odot. We also performed spectral analysis of the SOPHIE spectra with the iSpec code. The Hipparcos time-series photometry shows a periodicity of P=5.743P=5.743 d, which is also seen in SOPHIE spectra as an RV modulation of the star A. We interpret it as being caused by spots on the stellar surface, and the star to be rotating with the given period. From the rotation and level of activity, we found that the system is 380−100+220380^{+220}_{-100} Myr old, consistent with an isochrone analysis (220−90+2120220^{+2120}_{-90} Myr). This work may serve as a test case for future studies of low-mass stars, brown dwarfs and exoplanets by combination of RV and direct imaging data.Comment: 15 pages, 9 figures, 7 tables, to appear in Ap
    • …
    corecore