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Phase transitions in crowd dynamics of resource allocation
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We define and study a class of resources allocation processes where gN agents, by repeatedly
visiting N resources, try to converge to optimal configuration where each resource is occupied by
at most one agent. The process exhibits a phase transition, as the density g of agents grows, from
an absorbing to an active phase. In the latter, even if the number of resources is in principle
enough for all agents (g < 1), the system never settles to a frozen configuration. We recast these
processes in terms of zero-range interacting particles, studying analytically the mean field dynamics
and investigating numerically the phase transition in finite dimensions. We find a good agreement
with the critical exponents of the stochastic fixed-energy sandpile. The lack of coordination in the
active phase also leads to a non-trivial faster-is-slower effect.

PACS numbers: 05.70.Fh, 89.65.-s, 87.23.Ge

I. INTRODUCTION

A general question that naturally arises in the study of
social systems is how collective behaviors can emerge
from the interactions among individuals. In spite of
the inherent complexity of these phenomena, simplified
mathematical models that assume simple automatic re-
sponses of individuals to stimuli can reproduce non-
trivial effects in the observed behavior [1]. Statistical
mechanics had a certain success in the use of coarse-
grained models of physical systems to connect the micro-
scopic dynamics with the macroscopic behavior, and its
techniques and concepts are starting to be fruitfully ap-
plied to understand social dynamics [2–5]. In particular,
the phenomena observed in the crowd dynamics, from
pedestrians flows [6] to vehicular traffic [7], have been
recently subject to quantitative measures. Observations
range from bottleneck oscillations, lanes and stripes for-
mation, intermittent flows, waves, turbulence [8], faster-
is-slower [9] and freezing-by-heating effects [10]. Inter-
estingly, this extremely broad class of collective phenom-
ena is explained at semi-quantitative level with the use
of models of interacting particles or granular fluids. This
shows that even if interactions among individuals in these
settings are rather simplified and mechanical, they still
lead to a certain level of collective coordination.
In this paper we show how a crowd dynamics in a re-

sources allocation context can give rise to a phase tran-
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sitions between an active and an absorbing phase. The
class of models we discuss is inspired by the Kolkata Paise
Restaurant (KPR) problem [11–14], which we generalize
and recast in the broader context of zero-range interact-
ing particle models [15].

The KPR is a repeated game played by a large num-
ber (gN , g being a real number) of agents with equally
shared past information. Every evening they try to get
the best service in one of the N restaurants of commonly
agreed ranks, each providing food for one person only. It
serves as a paradigm for a problem of resource utiliza-
tion, where agents learn from their actions to maximize
the effective utilization of available resources. At unit
density (g = 1), a simple random choice algorithm [11]
leads (in unit convergence time) to a occupation of a
fraction of f = 1 − e−1 ≃ 0.63 only of the resources,
which of course falls much short of a fully efficient us-
age of them. As seen in various earlier studies [12–14],
apparently smarter strategies fail to yield better results.
However, a stochastic strategy [14] that maintains a näıve
tendency to stick to an agent’s past choice, with proba-
bility decreasing with the crowd size, leads to an efficient
utilization fraction f of about 0.796 [14] and it converges
to the above within a time (iteration) independent of N .
An extension of this strategy to the Minority game [16]
problem (with knowledge of both the sign and size of
the population difference among two alternative choices),
gives the optimal solution (with fluctuation bounded by
logN and convergence time bounded by log(logN) [17]).
Our focus will be on the nature of the collective behavior
rather than on the efficiency of individual behavior. For
the latter, we refer to applications of game theory and
adaptive learning, as e.g. in [18–22]. We note, in pass-
ing, that the relation between the degree of individual
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rationality and the efficiency of collective allocation can
be a non-trivial one, as shown e.g. in Refs. [23, 24].
Here we will study the general problem with N restau-

rants and gN agents, where g, the density, is a fixed ex-
ternal parameter of the dynamics. Recasting the problem
in terms of zero-range interacting particles, we report a
phase transition from a frozen phase with satisfied agents
to an active phase with unsatisfied ones at a critical den-
sity gc and perform extensive numerical simulations as
well as some analytical calculations to understand its fea-
tures, finding a good agreement with the exponents of
stochastic fixed-energy sandpiles [25]. The study of the
relaxation properties of the frozen phase reveals an in-
teresting faster-is-slower effect: This consists in the gen-
eral observation that, from vehicular traffic to logistic,
a higher level of coordination can arise from strategies
which involve a slower dynamics (e.g. waiting), that how-
ever speed up performances.
The paper is organized as follows: In Sec. II, we intro-

duce the class of models under study. Next, in Sec. III
we present the results of numerical simulations and in
Sec. IV we provide the analytic treatment for the mean
field case. We conclude with a summary and some dis-
cussions in Sec. V.

II. THE MODELS

Inspired by the KPR problem [11, 14] with N individuals
competing for N restaurants (each serving food to one
person each), we propose a more generic and fundamental
stochastic occupation problem with exclusion.
The rank ordering among the restaurants, as in the

original KPR problem [11, 14] is dropped here and we
consider in general gN agents, where g, the density, is an
external fixed parameter of the dynamics. We will refer
from now on to individuals as particles and restaurants
as the sites or nodes of an underlying graph. In these
terms the original problem is defined in a fully connected
geometry.
A particle moves from the site i it occupies to a ran-

domly chosen neighbor j with a rate that depends only on
the number of particles that is present on it v(ni). This
is by definition a zero range process (see [15] for a review)
which allows us to conclude that the stationary probabil-
ity distribution of the number of particles per site factor-
izes in terms of single site functions. Given the nature of
the problem, we will consider models with v(1) = 0, i.e.
costumers are happy while alone, and v(n+1) ≥ v(n), i.e.
repelling particles. Given this expression for the rates, at
low densities (g < 1) there are dynamically frozen con-
figurations with sites filled by single particles. On the
other hand, for high densities (g > 1) a finite fraction of
sites – that we shall call ‘active’ – will have multiple oc-
cupancy. We will show that there is a transition between
these two phases that occurs at a certain density gc ≤ 1.
Notice that, in principle, the process is ergodic so every
configuration of is accessible. Therefore, for g ≤ 1, the

process will sooner or later visit an absorbing configura-
tion where ni ≤ 1 for all sites i. Still, when N is large
enough and g > gc, frozen configurations will be visited
extremely rarely, over time-scales which are much longer
than those which are accessible to numerical simulations.
We choose as the order parameter the steady state den-
sity of active sites ρa (density of sites having n > 1).
So the absorbing phase corresponds to ρa = 0 whereas,
above some density gc the steady state shows a persistent
dynamics with a non-zero value of the order parameter
(ρa > 0).
We will analyze in particular two models:

(A) v(n) = 1− 1
n

(B) v(n) = (1− p)θ(n− 1).

We will refer from now on to a parallel dynamics in
which a simultaneous update of the nodes is done at each
time step, i.e. agents’ actions are simultaneous akin to a
repeated game setting.
It will be pointed out later that a sequential update

in which at each step a randomly chosen particle jumps
with some probability leads here to the trivial result that
gc = 1. This corresponds to the limit p → 1 of model B.
The model A implements the stochastic crowd avoiding

strategy of the original KPR problem[14]. Here, if the
site k has nk ≥ 1 particles, each of them stay back with
probability 1/nk in the next time step, otherwise it jumps
to any of the neighboring sites.
In the model B an external parameter p is introduced

that represents the “patience” of costumers to over-
crowded conditions. Here, if the site k has nk ≥ 1 par-
ticles, each of them stays with probability p in the next
time step, otherwise it jumps to any of the neighboring
sites.
The model B is in practice a kind of fixed energy sand-

pile [25], but the study of its dynamics as a function of
the parameter p will reveal an interesting faster-is slower
effect related to the relaxation time of the frozen phase.
We finally point out that a waiting choice can be ratio-

nal from the point of view of game theory: the agents in
overcrowded sites could wait simply because they expect
that others are leaving them alone.
In the next section we report a detailed analysis of the

phase transition of both models with the use of numerical
simulations in a fully connected geometry, a 1d chain
and a 2d square lattice. Then, we perform analytical
calculations for the mean field case.

III. RESULTS FROM NUMERICAL

SIMULATIONS

We measure the times required to reach the steady state
below and above gc. Below gc, the order parameter ρa
reaches a value ρa = 0 in the steady state. Above gc,
order parameter ρa evolves to a stationary state and fluc-
tuates around a mean value ρ0a (> 0). The system has
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FIG. 1. Simulation results for mean field case, gc = 0.7502 ± 0.0002. (a) Variation of steady state density ρa of active sites
versus g − gc, fitting to β = 0.98 ± 0.02. The inset shows the variation of ρa with density g. (b) relaxation to absorbing
state near critical point for different system sizes, the inset showing the scaling collapse giving estimates of critical exponents
α = 1.00 ± 0.01 and z′ = 0.50 ± 0.01. (c) Scaling collapse of ρa(t). The inset shows the variation of ρa(t) versus time t for
different densities g. The estimated critical exponent is ν‖ = 1.00± 0.01. The system sizes N are mentioned.
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FIG. 2. Simulation results for 2-d case, gc = 0.8827±0.0002. (a) Variation of steady state density ρa of active sites versus g−gc,
fitting to β = 0.68 ± 0.01. The inset shows the variation of ρa with density g. (b) relaxation to absorbing state near critical
point for different system sizes, the inset showing the scaling collapse giving estimates of critical exponents α = 0.42± 0.01 and
z = 1.65± 0.02. (c) Scaling collapse of ρa(t). The inset shows the variation of ρa(t) versus time t for different densities g. The
estimated critical exponent is ν‖ = 1.24± 0.01. The simulations are done for square lattices of linear size L (N = L2).

persistent dynamics in this phase. The evolution of the
order parameter is exponential away from gc, and can be
expressed as

ρa(t) = ρ0a

[

1− e−t/τ
]

(1)

for g > gc, and

ρa(t) ∝ e−t/τ (2)

for g < gc, where τ is the relaxation time. We will de-
note the asymptotic value of the order parameter as ρa
hereafter. Near the critical point (g − gc → 0+), we find
ρa ∼ (g− gc)

β where β is the order parameter exponent,
and τ ∼ (g−gc)

−ν‖ . Generally ρa(t) obeys a scaling form

ρa(t) ∼ t−αF

(

t

τ

)

; τ ∼ (g − gc)
−ν‖ ∼ Lz, (3)

where α and z are dynamic exponents and L denotes
size of the system. We then get β = ν‖α by comparing
Eq. (1), Eq. (2) and Eq. (3) when t/τ is a constant for
t → ∞. We study numerically the time variation of ρa(t)
and measure the exponents by fitting to the above scaling
relation.

A. Model A

1. Mean Field case

For the mean field case, we have studied systems of N =
106 sites, averaging over 103 initial conditions. We get
gc = 0.7502±0002. The scaling fits of ρa(t) for different g
values (see Fig. 1) give β = 0.98±0.02, z′ = 0.50±0.01 (if
we assume N = L4 and using Eqn. (3), we get a relation
z = 4z′ and therefore z = 2.0 ± 0.04), ν‖ = 1.00 ± 0.01,
α = 1.00±0.01. It may be noted that these independently
estimated exponent values satisfy the scaling relation β =
ν‖α well.

2. Lattice cases

We studied the same dynamics in 1-d and 2-d. For a lin-
ear chain in 1-d, we took N = L = 104 and averaged over
103 initial conditions. For 2-d we consider square lattice
(N = L2) with L = 1000 and averaging over 103 initial
conditions. Periodic boundary condition were employed
in both cases.
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FIG. 3. Phase diagram for the generalized model in the (g, p)
plane, showing the phase boundaries separating the active
and absorbing phases in 1-d, 2-d and mean field cases. The
active phases are on the right of the phase boundaries while
the absorbing phases are on the left in the respective cases.
The system sizes are N = 105 for mean field, 1000× 1000 for
2-d, and 104 for 1-d.

(a) The model is defined in 1-d as follows: The parti-
cles are allowed to hop only to their nearest neighbor
sites, and each particle can choose either left or right
neighbor randomly. We find gc = 1 and hence the
phase transition is not very interesting.

(b) In the 2-d version of the model, we consider square
lattices and the particles are allowed to choose one of
the 4 nearest neighbors randomly. For N = 1000 ×
1000, we get gc = 0.88 ± 0.01, β = 0.68 ± 0.01, z =
1.65 ± 0.02, ν‖ = 1.24 ± 0.01 and α = 0.42 ± 0.01
(Fig. 2). It may be noted that these independently
estimated exponent values do not fit very well with
the scaling relation β = ν‖α. However, this type
of scaling violation is also obseved in many active-
absorbing transition cases [26].

B. Model B

1. Mean field case

For the mean field case, we have studied for N = 106,
averaging over 103 initial condition. We numerically in-
vestigate the phase diagram and the universality classes
of the transition. In mean field case, the phase boundary
seems to be linear starting gc = 1/2 for p = 0 and ending
at gc = 1 for p = 1 (Fig. 3), obeying gc =

1
2 (1+p). In this

case, for p = 0, we find the critical point to be gc = 1/2,
and this is similar to the fixed energy sandpiles [25]. The
critical exponents are the same along the phase boundary
and they match with those of model A.

2. Lattice cases

We studied the same dynamics in 1-d and 2-d. For a
linear chain in 1-d, here also we took N = L = 104

and average over 103 initial condition. For 2-d we took
1000× 1000 square lattice with L = 1000 and averaging
over 103 initial conditions.

(a) For 1-d, for the case p = 0, we find gc = 0.89± 0.01,
with β = 0.42±0.01, z = 1.55±0.02, ν‖ = 1.90±0.02
and α = 0.16± 0.01 (Fig. 4). The phase boundary in
(g, p) is nonlinear: it starts from gc = 0.89± 0.01 at
p = 0 (Fig. 4) to p = 0.43 ± 0.03 at g = 1 (Fig. 3).
Thus, one can independently define a model at unit
density (g = 1) and calculate the critical probability
pc for which the system goes from an active to an
absorbing phase.

(b) For 2-d, for the case p = 0, we find gc = 0.683±0.002,
with β = 0.67±0.02, z = 1.55±0.02, ν‖ = 1.20±0.03
and α = 0.42 ± 0.01. The phase boundary seems
nonlinear, from gc = 0.683± 0.002 for p = 0 (Fig. 3)
extending to gc = 1 at p = 1.

Model A Model B Manna

β

1D 0.42 ± 0.01 0.382 ± 0.019
2D 0.68 ± 0.01 0.67 ± 0.02 0.639 ± 0.009
MF 0.98 ± 0.02 0.99 ± 0.01 1

z

1D 1.55 ± 0.02 1.393 ± 0.037
2D 1.65 ± 0.02 1.55 ± 0.02 1.533 ± 0.024
MF 2.00 ± 0.04 2.0 ± 0.04 2

α

1D 0.16 ± 0.01 0.141 ± 0.024
2D 0.42 ± 0.01 0.42 ± 0.01 0.419± 0.015
MF 1.00 ± 0.01 1.00 ± 0.01 1

ν‖

1D 1.90 ± 0.02 1.876 ± 0.135
2D 1.24 ± 0.01 1.20 ± 0.03 1.225 ± 0.029
MF 1.00 ± 0.01 1.00 ± 0.01 1

TABLE I. Comparison of critical exponents of this model with
those of the conserved Manna model [27].

IV. ANALYTICAL TREATMENT OF THE

MODELS IN MEAN FIELD CASE

In the mean field case the particles can jump from a
site to any other, all with equal probability, or, equiv-
alently, the underlying graph is fully connected. From
the theory of zero range processes we know that the sta-
tionary probability distribution is factorized in terms of
single site quantities. If ρin is the probability that a site
i has n particles, the average rate of outgoing particles
is 〈ui〉 =

∑

n ρ
i
nv(n)n. By symmetry, we can work un-

der the hypothesis that ρin = ρn ∀i, we have simply
〈ui〉 = 〈u〉 =

∑

n nv(n)ρn, that at stationarity is equal
to the average number of incoming particles, since the
density is fixed. A sequential dynamics would consist
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(= N).

of sequences of one-particle jump events and the master
equation has the form:

ρ̇k(t) = −(〈u〉+ kv(k))ρk(t)

+θ(k)〈u〉ρk−1(t) + (k + 1)v(k + 1)ρk+1(t).

(4)

Multiplying by sk, summing over k we have the equation
for the characteristic function G(s) =

∑

k ρks
k:

Ġ = −(1− s)(〈u〉G(s) −

∞
∑

n=1

nv(n)ρns
n−1) (5)

from which we have a self-consistent formula for the sta-
tionary solution:

G(s) =
1

〈u〉

∞
∑

n=1

nv(n)ρns
n−1. (6)

For the case (A) the solution of Eq.(6) is

G(s) = θ(1− g)(1− g + sg) + sθ(g − 1)e−(g−1)(1−s) (7)

For the case (B) the solution of Eq.(6) is

G(s) = θ(1−g)(1−g+sg)+θ(g−1)
esx − 1

x
(g−x), (8)

where x is the solution of g = xex

ex−1 . In both cases below
gc = 1 the activity is zero, i.e. the system falls into the
absorbing state till this is present. The order parameter
or the fraction of active sites as a function of g is depicted
in Fig. 5. On the other hand, the parallel dynamics of
the model B with p = 0 is particularly simple to analyze,
since the number of particles on top of each site follows
the discrete evolution equation:

nt+1 =

{

ni if n(t) 6= 1,
ni + 1 if n(t) = 1.

 0
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FIG. 5. Behavior of order parameter for sequential and par-
allel dynamics. For sequential dynamics, gc = 1 for both
models. For the model with p = 0, the parallel dynamics
gives gc = 1

2
.

Then, we have the self consistent equation for the sta-
tionary state:

ρn = e−g+ρ1

[

(1 − ρ1)
(g − ρ1)

n

n!
+ θ(n)ρ1

(g − ρ1)
n−1

(n− 1)!

]

.

(9)
From we which we can work out the characteristic func-
tion

G(s) = (1− ρ1 + sρ1)e
−(g−ρ1)(1−s) (10)

From G′(0) = ρ1, we end up with an equation for x =
g− ρ1, that, apart from the solution x = 0, has the form

g =
x(1 + xe−x)

1− e−x + xe−x
. (11)

Finally, the order parameter can be calculated consis-
tently once we know G(s) from x (Eq. (8)), since ρa =
1−G(0)−G′(0) and its behavior as function of g is de-
picted in Fig. 5.
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A. Approximate analysis of the critical point and

faster-is-slower effect

To get insights on the value of the critical point as well
as on the time to reach a frozen configuration below g =
1, we will analyze the dynamical stability of the frozen
phase probing it with a simple perturbation of the form:

ρ0 = 1− g + δ (12)

ρ1 = g − 2δ (13)

ρ2 = δ (14)

i.e. we pick a fraction 2δ of particles and move them
to already filled sites, neglecting the case in which some
of them choose the same site. This perturbation evolves
according to the equation [28]

δ(t+ 1) = δ(t)− (1− g + δ(t))(1 − e−2v(2)δ(t))

+δ(t)v(2)2e−2v(2)δ(t) (15)

whose solution scales, for large enough times, like

δ(t) ∝

[

2v(2)

(

1−
v(2)

2
− g

)]t

(16)

with a relaxation time

τ = −
1

log
[

1− 2v(2)(1− v(2)
2 − g)

] (17)

that diverges in gc = 1 − v(2)
2 . This value coincides in

a very good approximation with the numerical values of
the critical point both for for the model A, gc = 3/4 and
B, gc =

1
2 (1 + p).

Moreover, for the model B the relaxation time at fixed
density as a function of p

τ(p) = −
1

log
[

1− 2(1− p)
(

1+p
2 − g

)] (18)

has a minimum, optimal value τ∗ = − 1
log[g(2−g)] in p∗ =

g, as it is shown in Fig. 6. This is a very simple example
of the faster-is-slower effect, by which agents who choose
a strategy which imply longer waiting times allow for a
faster collective coordination. Note that waiting can be
rational at the individual level, if an agent expects that
others are leaving her site.

B. Analysis of the finite size effects on the time to

reach the absorbing state.

Let’s call π the weight of the frozen configuration for
given N sites and K = gN particles, its inverse can be
an estimator of the time required to reach the absorbing
state. We have:

π =
∑

frozen

P (−→n ) (19)

0 0.25 0.5 0.75 1
p

0

30

60

90

τ
g = 3/4
g = 2/3
g = 4/5

FIG. 6. Relaxation time τ as a function of the waiting prob-
ability p for the model B for a few values of g. It diverges at
p = 1 and p = 2g−1 and has an optimal minimum at p∗ = g,
when τ = τ∗.
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FIG. 7. Exponential dependency of timescale to reach the
absorbing state, with the system size in mean field cases for
Model A at g = 0.55 and Model B at g = 0.80. The data are
averaged over 104 realizations.

Since the process is zero-range, at stationarity P (−→n ) =
∏N

i pi(ni), then, if the graph is homogeneous we can
leave the dependency on the site to get

π =

(

N

K

)

ρK1 ρN−K
0 (20)

Using Stirling approximation we have finally

log π ≃ −N

[

g log
g

ρ1
+ (1 − g) log

(

1− g

ρ0

)]

(21)

i.e. it is exponentially decreasing with the system size.
The Fig. 7 shows some typical numerical results for the
average time to reach an absorbing configuration as a
function of the system size.

V. SUMMARY AND DISCUSSIONS

The dynamics of social systems is recently gaining more
and more insights borrowing concepts and techniques
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from statistical mechanics and by developing some toy
models. The toy model paradigm [29] helps us to under-
stand complex emergent behavior of such socio-economic
systems. In this paper we show how a crowd dynam-
ics in a resources allocation game gives rise to a phase
transition between an active and a frozen phase, as the
density varies. In this respect, we have defined and stud-
ied a class of models, where gN agents compete among
themselves to get the best service from N restaurants of
same rank, generalizing the ‘Kolkata Paise Restaurant’
problem. In the original problem, where density g = 1
was far from its critical value gc, the relaxation time τ ,
given by Eqn. (3), never showed any L = N1/d depen-
dence. We recast these models in terms of zero-range
interacting particles in order to get analytical insights on
the systems’ behavior. As long as g ≤ 1, absorbing frozen
configurations are present, and that can be reachable or
not, depends on the underlying dynamics. We found the
existence of a critical point gc above which the agents are

unable to find frozen configurations. In the case in which
the agents are moving if and only if they are unsatisfied
(model B) with p = 0, they fail to reach satisfactory con-
figurations if the density is above gc = 1/2. Strategies
where agents wait longer (higher p) speed up the con-
vergence, increasing gc and decreasing the time to reach
saturation configurations (faster-is-slower effect). We in-
vestigated numerically the phase transition in finite di-
mensions finding a good agreement with the exponents
of stochastic fixed-energy sandpile (Table. I) [25, 27, 30].
Thus, we have a simple model for resource allocation,
which is solvable, and shows a variety of interesting fea-
tures including phase transitions as in well known models.
Further investigations are needed in order to understand
the emergence of waiting strategies, i.e. how they could
depend on agents’ beliefs or learning processes, as well
as it would interesting the study the case of heteroge-
neous agents (with different strategies) and/or restau-
rants (with different ranks).

[1] P. Ball, Complexus 1, 190 (2003).
[2] T. M. Liggett, Interacting Particle Systems (Springer,

1985).
[3] C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys.

81, 591 (2009).
[4] Econophysics and Sociophysics, edited by B. K.

Chakrabarti, A. Chakraborti, A. Chatterjee (Wiley-
VCH, Berlin, 2006).

[5] F. Vega Redondo, Complex Social Networks (Cambridge
University press 2007).

[6] D. Helbing and A. Johansson, Pedestrian, Crowd and
Evacuation dynamics, Encyclopedia of Complexity and
Systems Science (Springer 2009).

[7] D. Helbing, Rev. Mod. Phys. 73, 1067 (2001).
[8] D. Helbing, A. Johansson, H.Z. Al-Abideen, Phys Rev E

75, 046109 (2007).
[9] D. Helbing, I. Farkas, T. Vicsek, Nature 407, 487 (2000).

[10] D. Helbing, I. Farkas, T. Vicsek, Phys Rev Lett 84, 1240
(2000).

[11] A. S. Chakrabarti, B. K. Chakrabarti, A. Chatterjee, M.
Mitra, Physica A 388, 2420 (2009).

[12] A. Ghosh, B. K. Chakrabarti, (2009),
Kolkata Paise Restaurant (KPR) problem,
http://demonstrations.wolfram.com/ KolkataPais-
eRestaurantKPRProblem.

[13] A. Ghosh, A. S. Chakrabarti, B. K. Chakrabarti, in
Econophysics & Economics of Games, Social Choices
& Quantitative Techniques, New Economic Windows,
edited by B. Basu, B. K. Chakrabarti, S. R. Chakravarty,
K. Gangopadhyay, (Springer, Milan, 2010), pg. 3.

[14] A. Ghosh, A. Chatterjee, M. Mitra, B. K. Chakrabarti,
New J. Phys. 12, 075033 (2010).

[15] M. R. Evans, T. Hanney, J. Phys. A: Math. Gen. 38,
R195 (2005).

[16] D. Challet, M. Marsili,Y.-C. Zhang, Minority Games: In-
teracting Agents in Financial Markets, (Oxford Univer-

sity Press, Oxford, 2005).
[17] D. Dhar, V. Sasidevan, B. K. Chakrabarti, Physica A

390, 3477 (2011).
[18] W. Brian Arthur, Am. Econ. Rev. 84, 406 (1994).
[19] M. Kandori, Repeated Games, The New Palgrave Dic-

tionary of Economics, 2nd Edition (2006).
[20] M. Nowak, K. Sigmund, Nature 364, 56 (1993).
[21] N. Hanaki, A. Kirman, M. Marsili, J. of Econ. Behavior

& Organization 77, 382 (2011).
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