11,088 research outputs found

    Dissociation and Decay of Ultra-cold Sodium Molecules

    Full text link
    The dissociation of ultracold molecules is studied by ramping an external magnetic field through a Feshbach resonance. The observed dissociation energy shows non-linear dependence on the ramp speed and directly yields the strength of the atom-molecule coupling. In addition, inelastic molecule-molecule and molecule-atom collisions are characterized

    Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    Get PDF
    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. The areas covered were: (1) development of a theoretical expression for the rotating ring disk electrode technique; (2) determination of the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; (3) determination of oxygen reduction mechanism in trifluoreomethanesulfonic acid (TFMSA) which was considered as an alternate electrolyte for the acid fuel cells; and (4) the measurement of transport properties of the phosphoric acid electrolyte at high concentrations and temperatures

    Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    Get PDF
    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. A theoretical expression for the rotating ring-disk electrode technique; the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; oxygen reduction mechanism in trifluoromethanesulfonic acid (TFMSA), considered as an alternate electrolyte for the acid fuel cells; and transport properties of the phosphoric acid electrolyte at high concentrations and temperatures are covered

    Formation of Quantum-Degenerate Sodium Molecules

    Full text link
    Ultra-cold sodium molecules were produced from an atomic Bose-Einstein condensate by ramping an applied magnetic field across a Feshbach resonance. More than 10510^5 molecules were generated with a conversion efficiency of ∼\sim4%. Using laser light resonant with an atomic transition, the remaining atoms could be selectively removed, preventing fast collisional relaxation of the molecules. Time-of-flight analysis of the pure molecular sample yielded an instantaneous phase-space density greater than 20.Comment: 5 pages, 4 figures (final published version

    Coherent Molecular Optics using Sodium Dimers

    Full text link
    Coherent molecular optics is performed using two-photon Bragg scattering. Molecules were produced by sweeping an atomic Bose-Einstein condensate through a Feshbach resonance. The spectral width of the molecular Bragg resonance corresponded to an instantaneous temperature of 20 nK, indicating that atomic coherence was transferred directly to the molecules. An autocorrelating interference technique was used to observe the quadratic spatial dependence of the phase of an expanding molecular cloud. Finally, atoms initially prepared in two momentum states were observed to cross-pair with one another, forming molecules in a third momentum state. This process is analogous to sum-frequency generation in optics

    Failure of hospital employees to comply with smoke-free policy is associated with nicotine dependence and motives for smoking: A descriptive cross-sectional study at a teaching hospital in the United Kingdom

    Get PDF
    Abstract Background Smoke-free policy aims to protect the health of the population by reducing exposure to environmental tobacco smoke (ETS), and World Health Organisation (WHO) guidance notes that these policies are only successful if there is full and proper enforcement. We aimed to investigate the problem of resistance to smoking restrictions and specifically compliance with smoke-free policy. We hypothesised that an explanation for non-compliance would lie in a measurable difference between the smoking behaviours of compliant and non-compliant smokers, specifically that non-compliance would be associated with nicotine dependence and different reasons for smoking. Methods We conducted a questionnaire-based, descriptive, cross-sectional study of hospital employees. Seven hundred and four members of staff at Addenbrooke's Hospital, Cambridge, UK, completed the questionnaire, of whom 101 were smokers. Comparison between compliant and non-compliant smokers was made based on calculated scores for the Fagerström test and the Horn-Waingrow scale, and level of agreement with questions about attitudes. For ordinal data we used a linear-by-linear association test. For non-parametric independent variables we used the Mann-Whitney test and for associations between categorical variables we used the chi-squared test. Results The demographic composition of respondents corresponded with the hospital's working population in gender, age, job profile and ethnicity. Sixty nine smokers reported they were compliant while 32 were non-compliant. Linear-by-linear association analysis of the compliant and non-compliant smokers' answers for the Fagerström test suggests association between compliance and nicotine dependence (p = 0.049). Mann-Whitney test analysis suggests there is a statistically significant difference between the reasons for smoking of the two groups: specifically that non-compliant smokers showed habitual smoking behaviour (p = 0.003). Overall, compliant and non-compliant smokers did not have significantly different attitudes towards the policy or their own health. Conclusion We demonstrate that those who smoke in this setting in contravention to a smoke-free policy do so neither for pleasure (promotion of positive affect) nor to avoid feeling low (reduction of negative affect); instead it is a resistant habit, which has little or no influence on the smoker's mood, and is determined in part by chemical dependence

    Sodium Bose-Einstein Condensates in an Optical Lattice

    Full text link
    The phase transition from a superfluid to a Mott insulator has been observed in a 23^{23}Na Bose-Einstein condensate. A dye laser detuned ≈5\approx 5nm red of the Na 323^2S→32 \to 3^2P1/2_{1/2} transition was used to form the three dimensional optical lattice. The heating effects of the small detuning as well as the three-body decay processes constrained the timescale of the experiment. Certain lattice detunings were found to induce a large loss of atoms. These loss features were shown to be due to photoassociation of atoms to vibrational levels in the Na2_2 (1)3Σg+(1) ^3\Sigma_g^+ state.Comment: Figures somewhat compromised due to size reductio
    • …
    corecore