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SUMMARY 

This work is concerned with a study of oxygen reduction and transport 

properties of the electrolyte in the phosphoric acid fuel cell. The areas 

covered in the work were: (i) development of a theortical expression for the 

rotating ring-disk electrode technique; (ii) determination of the intermediate 

reaction rate constants for oxygen reduction on platinum in phosphoric acid 

electrolyte; (iii) determination of oxygen reduction mechanism in 

d trifluoromethanesulfonic acid (TFMSA) which has been considered as an 

alternate electrolyte for the acid fuel cells; and (iv) the measurement of 
a 

transport properties of the phosphoric acid electrolyte at high concentrations 

and temperatures. 

(1) Theoretical Analysis of the Rotating Ring-Disk Electrode Method 

The previous theoretical treatments of the rotating ring-disk eleotrode 

method to distinguish between the mechanisms of electroredaction of O2 to H20 

with and without the formation of H 0 as an intermediate, were examined. A 2 2 

-1/2 
new expression was derived for I /(I -I 1 as a function of o 

dl dl d 
(where Idl 

is the disk limiting ourrent, I is the diso current and w is the rotational 
d 

speed of eleotrode) for five possible reaction models. This, along with the 

c) 

d r 
-'I2 (I is the ring current). corresponding expressions for 1 /I vs. w r 

enables the calculations of the individua1,rate constants for the intermediate 
G 

steps of 0 reduction. The experimental data of Id and I were obtained for 2 r 

O2 reduction on platinum in 0.55 1 H2S04 at 25'~. By use of these 

experimental results in the present theoretical treatment, it is shown that: 

(1) the most applicrable model over the entire potential region was the one 

suggested by Damjanovic, Genshaw and Bockris: (2) the models involving the 

adsorption/desorption of H202 were applicable only over a narrow region of 
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potential: and (3) the models involving the chemical decomposition of H 0 
2 2 

-1/2 
were inconsistent with tlte dependence of I /(Idl-Id) VS. o . dl 

(2) Oxygen Reduction in Phosphoric Acid 

The oxygen reductioxt reaction was investigated at platinum electrodes in 

phosphoric acid in the concentration range 0.71 (6.6%) to 17.5M (95%) at 25'~ 

using the rotating ring-disc electrode technique. The mechanism of the oxygen 

electrode reaction was dliscussed in terms of the direct four-electron transfer 

reduction to water and the formation of hydrogen peroxide as an intermediate 

in a parallel two-electron transfer reaction. The rate constants of the 

intermediate reaction steps were calculated from the ring-disc data for 

various potentials and electrolyte concentrations. The characteristics of the 

reaction were found to bs markedly dependent on the concentration of 

phosphoric acid. 

(3) Oxygen Redact ion in 'It'FMSA 

Trifluoromethane suXfonic acid (TFBISA) has been considered as an 

alternate electrolyte for fuel cell applications. The kinetics of oxygen 

reduction at Pt was studied using a rotating ring-disc electrode technique in 

TFMSA (0.05, 0.1, 1.0, and 6.OM) and in 1.OM TFMSA with phosphoric acid 

additive (0.003 and 0.1M). The amount of hydrogen peroxide intermediate 

produced in TFMSA on oxide-covered Pt surface (electrode potential scanned 

from 1.0 to 0.3 V vs. HIE) was found to be higher than that on oxide-free 

surface (electrode poten1:ial scanned from 0.3 to 1.0 V vs. WE). A half 

reaction order with respect to oxygen was observed For the oxygen reduction in 

TFMSA solutions. The reaction order increased to one with the addition of 

phosphoric acid to 1.0 M TPMSA, A possible mechanism of oxygen reduction was 

proposed to explain the half reaction order with respect to oxygen. 



(4)  Transport Properties of Phosphoric Acid Electrolyte 

The transport properties of phosphoric acid are important to the fuel 

cell performances. In this work, the kinematic viscosity and specific 

conductivity of the electrolyte, have been measured over a range of phosphoric 

acid concentrations from 0.5 to 19 M (6 - 100%) and temperatures from 25 to 

200'~. The specific conductivity was measared with a Beckman conductivity 

bridge and a conductivity cell. The kinematic viscosity was measured with 

Cannon-Fenske viscometers, The results indicate that the conductivity in 

0 concentrated phosphoric acid follows a non-Stokian transport mechanism. 
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The energy c r i s i s  of 1973 st imulated the  renaissance of fue l  o e l l s  (1). 

Fuel o e l l s  a r e  superior  t o  other e l e c t r i c i t y  generators i n  several  respects  

(2); such as: high eff iciency,  po l lu t ion  f r e e  and s i l e n t  operation. In  f u e l  

c e l l s ,  t h e  f u e l s  a re  converted t o  hydrogen-rich gases and then fed i n t o  the  

fue l  c e l l .  The d i r e c t  current  generated from the  c e l l  is converted t o  

a l t e rna t ing  current  by t h e  power conditioner. The heat  released from the  fue l  

'- c e l l  is u t i l i z e d  f o r  the  endothermic reac t ion  i n  the  fue l  processor, 

The e s s e n t i a l  c r i t e r i a  f o r  fue l  c e l l s  a r e  dependent on the  types of 
3 

applicat ions.  The requirements f o r  c i v i l i a n  t e r r e s t r i a l  use a r e  high 

ef f ic iency,  high power densi ty,  low c a p i t a l  cos t  and long l i f e .  The 

phosphoric ac id  f u e l  c e l l  ( 3 )  appears t o  be the  bes t  candidate when na tu ra l  

gas and naphtha a re  used as  f ae l s .  This f a e l  c e l l  i s  operated a t  2 0 0 ~ ~  and 

the re  is  a need t o  t r a n s f e r  waste heat  from the  fue l  c e l l s  t o  the fuel  

processor. Molten carbonate (1,4) and s o l i d  e l e c t r o l y t e  (1,5) fue l  c e l l s  

appear t o  be promising when coupled with a coal g a s i f i e r  operating a t  

temperatures of 1000 - 1 5 0 0 ~ ~ ,  

The major cause of t h e  ef f ic iency l o s s  in  the  fuel  c e l l  is  due t o  the  

slow reaat ion r a t e  of oxygen reduction a t  the  cathode (8 ) .  The overpotential  
I) 

2 
of the  hydrogen electrode i s  l e s s  than 20 mV a t  200 mA/cm ; however, the  

a 

overpotent ia l  of the  oxygen electrode is 400 mV a t  the same current  densi ty,  

The-oxygen electrode reac t ion  is  the  major caase of ef f ic iency l o s s  in  

phosphoric ac id  f u e l  c e l l s ,  It has been shown t h a t  the overpotential  l o s s  f o r  

the  oxygen redaction react ion can be reduced wi th  addi t ives ,  such as, 

trifluoromethane sulfonic ac id  (TFMSA) i n t o  phosphoric ac id  e lec t ro ly te .  The 

exchanging current  densi ty  i n  aqueous TFMSA is  one hundred times higher than 



t h a t  i n  85% H3P04. The mechanism of oxygen reduction i n  H PO and TWSA i s  
3 4 

not known, The object ive  of t h i s  work are:  

i) Study of electrode k i n e t i c s  of oxygen reduction i n  fue l  c e l l  

e lec t ro lytes-  The reduction of oxygen involves two p a r a l l e l  react ion 

paths. One reac t ion  path is the  d i r e c t  reduction of oxygen t o  water. 

The second path i s  t h e  reduction of oxygen t o  hydrogen peroxide, followed 

by the  reduction of: hydrogen peroxide t o  water. An evaluation of the  

r a t e  constants  of individual  r eac t ion  path of oxygen reduction is  

e s s e n t i a l  f o r  the m~nderstanding of oxygen reduction kinet ics .  A method 

t o  ca lcu la te  these r a t e  constants  from the  ro ta t ing  ring-disk experiment 

has been developed i n  t h i s  work. The k i n e t i c s  of oxygen reduction was 

studied by using the  ro ta t ing  ring-disk electrode technique in  phosphoric 

ac id  and trifluoromethanesulfonic acid (TFMSA). The r e s u l t s  a re  

summarized i n  t h i s  report .  

ii) Inves t igat ion of t ranspor t  p roper t i e s  of phosphoric ac id  e lec t ro lyte-  The 

physical propertieii  of e l e c t r o l y t e  a r e  important t o  the  fuel  c e l l  

performance ( 3 ) .  The conductivi ty of the  e l e c t r o l y t e  can a f f e c t  the  c e l l  

Il? loss .  The maximum operating temperature i s  l imi ted  by the  boi l ing  

point  of the  e leot ro lyte .  Besides, the  r a t e  of oxygen reduction i s  

proport ional  t o  the1 s o l u b i l i t y  and d i f f i r s iv i ty  of dissolved oxygen i n  the  

e l e c t r o l y t e  (12') , The information of t ranspor t  proper t ies  i n  phosphoric 

ac id  over a  wide concentrat ion range would c l e a r i f y  the  change i n  solvent 

s t r u c t u r e  (from water t o  phosphoric ac id)  when the e lec t ro ly te  changes 

from aqueous solut ion t o  concentrated phosphoric acid medium. For these 

purposes, the  condn.ctivity and v i s c o s i t y  of phosphoric ac id  were measured 

over a  range of coa~centrat ions from 0.7 t o  17.5M (6.6 - 100%) and the 

temperatnre from 25' t o  2 0 0 ~ ~ .  



11. ELECTRODE KINETICS OF OXYGEN REDUCTION 

The aims of this work is to investigate the effects of the electrolyte on 

the kinetics of oxygen reduction at platinum. For this purpose, the rotating 

ring-disk electrode technique was ased. All the kinetics studies were carried 

out on the platinum electrode because, platinum is the best catalyst for the 

fuel cell reaction. Since the phosphoric acid is presently ased in the fuel 

cell and trifl~oromethanesalfonic acid (TFMSA) shows promise for fuel cell 

applications (13), the investigation was carried oat in these two acids. 

There are four sections in this chapter. In section 2.1, the 

d 

experimental procedures and preparation of electrode, electrolytes, and 

a glassware are described. In section 2.2, a set of new equations for the 

calculation of rate constants of the intermediate reaction steps from the 

rotating ring-disk electrode is developed. In section 2.3, the results for 

the reduction of oxygen in phosphoric acid over the concentration range of 0.7 

- 17.5M are analyzed by the method presented in section 2.2. The results of 

oxygen reduction in aqueous TFMSA (0.05 - 6.OM) and in a mixed aoid which 

containing 1.0M TFMSA and 0.003 - 0.1M phosphoric aoid are presented in 

seotion 2.4. 

2.1 EXPERIMEuTAt 

Ex~erimental set-no 

1 A glass cell with one compartment for the test and auxiliary electrodes 

and another for the reference eleotrode was uted in the electrode kinetics 
9 

experiments. A platinam ring-disk electrode (Pine Instrument) with a 

collection efficiency of 17.6% served as the working electrode. The electrode 

potentials were measured against a dynamic hydrogen electrode (DEE) and were 

converted to a reversible hydrogen electrode (BHE) scale. A large platinmn 

gauze was ased as the counter electrode, The potentials of the disk and ring 

electrodes were controlled by a potentiostat (Pine Instrument RDE 3 )  and the 

rotational speed of the electrode was controlled by an analytical rotator 



(Pine Instrument ASR 2 ) .  The cur ren t s  a t  the  d isk  and r ing e lec t rodes  were 

recorded on a dual pen X-Y-Y' recorder (Soltec 6431). 

P r e ~ a r a t i o n  of e lec t ro lv tes ,  gases, and glassware 

The c e l l ,  the  e lec t rodes  and the  glassware were cleaned with chromic acid 

(0.1 mol. K C r  0 dissolved i n t o  1 R  H SO followed by soaking i n  a 1.1 2 2 7  2 4 

E2S04/HN03 solut ion f o r  8 hr. and then i n  double d i s t i l l e d  water f o r  another 8 

hr. The 0.55M s u l f u r i c  ac id  was prepared by d i l u t i n g  concentrated s u l f u r i c  

ac id  ( u l t r a  pure, Alfa, Ventron Div.) with double d i s t i l l e d  water, Phosphoric 

ac id  (85%, e lec t ron ic  grade, J.T. Baker) was t r e a t e d  with 10% hydrogen 

perioxide (90%, s t a b i l i z e r  f r ee ,  FMC) and heated t o  50-70°C f o r  1 hr. The 

solut ion was concentrated t o  85% by evaporation a t  1 6 0 ' ~  i n  a Teflon vesse l ,  

The solut ion was d i l u t e d  with double d i s t i l l e d  water t o  the  desired 

concentrations. Trifluoromethanesulfonic acid  (3M Co.), was d i s t i l l e d  twice 

under vacuum (B.P. < 4 0 ~ ~ 1 .  The d i s t i l l a t e  was added t o  double d i s t i l l e d  

water t o  form trifluoromethanesulfonic acid  (TFMSA) monohydrate which was then 

vacuum-distilled (B.P. < 80°c). Before user the  monohydrate was d i lu ted  ~ i t h  

double d i s t i l l e d  water t o  the  des i red  concentration. 

Ex~er imenta l  ~ r o c e d u r e  

Before the  electrode k i n e t i c s  experiments, the  solut ion was deaerated 

with p u r i f i e d  ni trogen gas and a cyc l i c  voltaunmogram on the  platinum d i sk  

e lec t rode was examined ,to insure the p u r i t y  of solut ions.  Then the  pur i f i ed  

oxygen was bubbled through the  e l e c t r o l y t e  f o r  1 hr. b r i n g  the  ro ta t ing  

ring-disk e lec t rode experiments, the  po ten t i a l  of the  d isk  electrode was 

scanned from 1.0 t o  0.3 V vs, DEE a t  a  scan r a t e  of 5 mV/S, while the 

p o t e n t i a l  of the r ing electrode was maintained a t  1.1 V vs. DHE ( t h i s  i s  a 

l imi t ing current  po ten t i a l  f o r  the  oxidation of hydrogen peroxide t o  oxygen). 

Experiments were ca r r i ed  out f o r  a  range of ro ta t iona l  speed from 400 t o  4900 

rpm a t  20-25'~. 



2.2 TBEORETICAL ANALYSIS OF TEE ROTATING RING-DISK ELECTRODE METEOD 

The r o t a t i n g  ring-disk e l ec t rode  technique has been ex tens ive ly  used f o r  

t h e  i n v e s t i g a t i o n  of t h e  mechanism of t h e  oxygen r edac t ion  i n  which hydrogen 

peroxide i s  formed a s  an in te rmedia te  (14-19). I n  t h i s  method, t h e  reduct ion  

of oxygen t akes  p lace  on a  c e n t r a l  d i s k  e l ec t rode  and t h e  generated hydrogen 

peroxide i s  de t ec t ed  a t  a  concent r ic  r i n g  e l ec t rode  w i t h  a  l a r g e r  rad ius .  The 

purpose of t h i s  work i s  t o  modify previous  t h e o r e t i c a l  t rea tments  (15,16,19) 

and t o  determine the  r a t e  cons t an t s  of t h e  in te rmedia te  s t e p s  f o r  the  r e a c t i o n  
6 

models shown i n  F ig ,  1. The r o t a t i n g  r ing-disk e l ec t rode  experimental d a t a  

1 obta ined  f o r  oxygen r edac t ion  a t  platinum i n  0.55M s u l f u r i c  ac id  a r e  used t o  

i l l u s t r a t e  t h e  procedure of t he  present  t h e o r e t i c a l  ana lys i s .  

Modif icat ion of t h e o r e t i c a l  t rea tments  f o r  t h e  c a l c u l a t i o n  of r a t e  cons t an t s  

Based on t h e  m a t e r i a l  balances,  t h e  mathematical express ion  which would 

permit  t h e  c a l c u l a t i o n s  of t h e  r a t e  cons t an t s  of t h e  in te rmedia te  s t e p s  f o r  

t h e  oxygen reduct ion  r e a c t i o n  can be der ived  f o r  each of t h e  models presented  

i n  Fig.  1. For t h e  sake of b r e v i t y ,  only t h e  equat ions f o r  Model I a r e  

presented  here.  The d e t a i l s  of t h e  a n a l y s i s  a r e  given i n  Reference 6 and 9.  

From t h e  m a t e r i a l  balance of oxygen and hydrogen peroxide spec i e s  i n  

Model 1 (Fig.  2.11, the r e l a t i o n s  among t h e  r ing  cn r r en t ,  Ir and t h e  

c express ions  f o r  r i n g  (I,) and t h e  d i s k  c u r r e n t ,  Id, t h e  l i m i t i n g  cn r r en t  a t  

t h e  d i sk ,  Idl, and t h e  r o t a t i n g  speed of e l ec t rode ,  u can be expressed as:  

'dl &d " 1 



Fig. 1 Reaction schemes for the electrorednction 

of O2 considered in the present work. 



Accordingly, the rate constants kl, k2, and k may be determined fron the 3 

intercepts and slopes of the plot of Id/Ir VS. o -'I2 and from the slopes of 

d 1 
-'I2 at different disk potential. the plot of I /(Idl-Id) VS. o 

Evaluation of the rate constants 

Two important expressions for the calculation of the rate constants are: 

(i) d l / I d l - I d  as a function of 0 2 ;  and (ii) I as a function of 

o . Figure 2 shows that the plot of I /(Idl-Id) vs. o 
dl 

-'I2 at different 

electrode potentials exhibits a linear behavior with an intercept equal to 1. 

-'I2 at various electrode potentials are liven in The plots of Id/Ir vs. o 

Fig. 3 (from 0.75 to 0.55 V vs. RHE) and in Fig. 4 (from 0.55 to 0.35 V vs. 

RHE). Using Model 1, it is possible to calculate the rate constants over the 

entire potential range (from 0.8 to 0.4 V vs. ME); the rate constants in 

H SO as a function of electrode potential are presented in Fig. 5. The ~ a t i o  
2 4 

of k1 to k2 is about 5 - 12 and is potential-dependent. Since k is larger 
1 

than k2, oxygen is mainly reduced to water via the direct four-electron 

transfer reaction path and only small amount of oxygen is reduced to water via 

the series reaction path which involves hydrogen peroxide as an intermediate. 

The rate constant k is greater than k2. This indicates that hydrogen * 3 

peroxide is reduced to water at a relatively rapid rate. Therefore, only a 

little amount of hydrogen peroxide diffuses into the bulk electrolyte as 

evidenced by the small ring currents. The faradaic efficiency for oxygen 

reduction is about 97%. 



POTENTIAL 
v vs. RE 

ELECTROLYTE 
: Has04 (0.55M) 

-1/2 Fig. 2. Idl/(Idl - Id) as a function of o 
at various disc potentials. 
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RATE CONSTANT , cm/sec 

Fig. 5 Rate constants of intermediate steps for O2 

redaction on Pt in 1N H2S04. These constants 

were calculated based on Model 1. 



2.3 KINETICS OF OXYGEN REDUCTION AT PLATINUM IN PHOSPHORIC ACID 

Concentrated phosphoric acid is presently used as the electrolyte in 

advanced fuel cells. The factor limiting the efficiency of this fuel cell is 

the overpotential for oxygen reduction reaction. The structure and physical 

properties of concentrated phosphoric acid are not well understood, but these 

certainly play a role in the kinetics of the oxygen reduction reaction. The 

double layer of mercury/concentrated phosphoric acid interface is thicker than 

in aqueous media (20). It is resonable to assume that there is a transition 

of the interfacial and balk properties when the electrolyte concentration 

increases from a water-based to a phosphoric acid-based solvent structure. 

For this reason, the present study was undertaken to elucidate the effect of 

the concentration of phosphoric acid solutions (from 0.7 to 17.531) on the 

kinetics of oxygen reduction at platinum electrodes. 

Mass Transfercorrected Tafel Behavior 

A rotating ring-disk electrode was used to measure the polarization 

curyes of oxygen reduction at platinum, and to quantitatively determine the 

amount of the hydrogen perioxide intermediate formed during the reduction 

process. The mass transfer corrected Tafel behavior for oxygen reduction on 

platinum for different pliosphoric acid concentrations is shown in Fig. 6. The 

plots correspond to the equation 

The Tafel plots presented1 in Fig. 6 are independent of rotation speed. In the 

region from 0.6 to 0.8 V vs. RHE, the Tafel slopes are about 120 mV. This 

result is similar to that (12,21,22) in other acid media. This indicates that 

the overall rednction of oxygen is controlled by the first charge transfer 

step under the Langmuir a.dsorption condition. 



Meohanistic Aspects of Electtoreduction of Oxygen 

Based on Model 1 and the procedure illustrated in the method the 

preceding theoretical analysis section, the values of kl, k2, and k for 
3 

oxygen reduction in phosphoric acid have been calculated. The rate constants 

(kl, k2, and 5 )  are presented as a function of electrode potential for 
various phosphoric acid concentrations in Fig. 7-10. In all cases, the ratio 

k /k is greater than 10, implying that most of oxygen reduces to water 
1 2  

directly through the four electron transfer reaction. 

I 

From Fig. 7 to 9, it is apparent that for phosphoric acid concentrations 

up to 81, k2 has the same potential-dependence as kl. This means that the 

rate determining step is probably the same for the both reaction paths. At 

higher concentrations, k2 becomes independent of potential; this indicates 

that the rate of the reaction is controlled by a chemical step prior to the 

electron transfer step. 

The behavior of k3 is similar to that of k2; it decreases with increasing 

phosphoric acid concentration. The significant decrease in k and k3 with 
2 

increasing phosphoric acid concentration leads to an increase in the faradaic 

efficiency for the reduction of oxygen to water. This is important because at 

the high phosphoric acid concentrations used in the fuel cells, the amount of 

hydrogen peroxide formed during the operation is negligible. 











F?E,44CTION RATE CONSTANT, k, , s-1 

Fig. 10 Potential dependence of rate constant kg for oxygen reduction of 

Pt in H3P04 in the concentration range 6.6 to 56 w/o at 25'~. 

18 



Conclusions 

From the results of the rotating ring-disk experiment, the following 

conclusions may be reached for the oxygen reduction on pt in concentrated 

phosphoric acid solution: (i) In the potential range 0.8 to 0.6V, the slope of 

the mass transfer-corrected Tafel plots is equal to 120 mV/decade and is 

independent of concentration; (ii) The rate constants for kl and k2 have the 

same potential dependence with the ratio of k /k greater than 10. 
1 2  

2.4 ELECTRODE KINETICS OF OXYGEN REDUCTION ON PLATINUM IN 

TRIF%UOROMETEANESULFONIC ACID (TFMSA) 

Trifluoromethanesulfonic acid (TFMSA, CF3S03H) and its homologues of 

higher molecular weight are considered alternatives to phosphoric acid as acid 

electrolytes for fuel cell. The reaction rate of oxygen reduction at platinum 

in TFMSA is about two order of magnitude higher than that in phosphoric acid 

(23). Although there have been some investigations of oxygen reduction on 

platinum in aqueous TFMSA and in TFMSA monohydrate on smooth and porous 

electrode (231, its kinetics in this electrolyte is not yet fully understood. 

The purpose of this study is to investigate the kinetics of oxygen redaction 

at smooth platinum in aqueous TFMSA (0.05 - 6.OM) and in a mixed acid 

containing 1.OM TFMSA and 0.003 - 0.11 phosphoric acid. 
Effects of Surface Oxide at Platinum on the Kinetics of Oxvxen Reduction 

in TFMSA 

During the rotating ring-disk experiment, when the electrode potential is 

scanned from 1.0 to 0.3 V vs. REE, the surface of the platinum electrode is 

first covered with a layer of oxide and then gradually reduced to bare 

platinam at the end of the scan, Conversely when the electrode potential is 

scanned from 0.3 to 1.0 V vs. REE, the electrode starts with an oxide-free 

surface and then the oxide is gradually formed at the potentials above 0.8 V 

vs. REE. 



The in f luence  of t h e  s u r f a c e  oxide on t h e  k i n e t i c s  of oxygen reduc t ion  a t  

p la t inum i n  0.05M TFMSA, i s  shown i n  Fig. 11 ( a t  o = 900 rpm). The d i s k  

c u r r e n t  ( I  f o r  oxygen reduc t ion  on t h e  oxide-free su r face  ( p o t e n t i a l  scanned d  

from 0.3 t o  1.0 V vs.  RHE) was h igher  than t h a t  on t h e  oxide-covered sur face  

( p o t e n t i a l  scanned from 1.0 t o  0.3 V vs. RHE). The maximum amount of hydrogen 

peroxide d e t e c t e d  on t h e  r i n g  e l e c t r o d e  (I  ) f o r  t h e  oxide-covered d i s k  
r 

e l e c t r o d e  was 400% h igher  than t h a t  f o r  t h e  oxide-free d i s k  e l e c t r o d e .  

React ion Order w i t h  Respect t o  Oxygen f o r  t h e  Oxvgen Reduction React ion a t  

Platinum i n  TFMSA 

An a t tempt  was made t o  determine t h e  r a t e  c o n s t a n t s  f o r  oxygen reduc t ion  

a t  p la t inum i n  TFMSA w i t h  t h e  procedure of t h e  t h e o r e t i c a l  a n a l y s i s  desc r ibed  

i n  S e c t i o n  2.2. Negative i n t e r c e p t s  were observed f o r  b o t h  t h e  Idl 1 ( Idl-Id) 

vs.  o -'I2 and I I1 vs.  o d  r -'I2 p l o t s  i n  a11 t h e  TP)ISA s o l u t i o n s  (0.05 - 6.OM) 

a s  w e l l  a s  i n  1 . O M  TFMSA s o l u t i o n  w i t h  phosphoric a c i d  a d d i t i v e s  (0.003 -- 
6.OM). One p o s s i b l e  exp lana t ion  i s  t h a t  t h e  r e a c t i o n  o rder  w i t h  respec t  t o  

oxygen i n  t h e  TFMSA medium i s  no t  un i ty .  According t o  t h e  fol lowing equa t ion  

(24) : 

log I = log Ik + m log (1 - I /I ) d d dl ( 4 )  

a  p l o t  of log Id vs.  log ( 1  - IdlIdl) should be l i n e a r  w i t h  a  s lope equal t o  

t h e  r e a c t i o n  o rder  of oxygen, m. A t y p i c a l  p l o t  of log Id vs .  log (1 - 

I / I  i n  0.05M TFMSA i s  p resen ted  i n  Fig.  12.  The s lopes  of t h e  s t r a i g h t  d  d l  

l i n e s  r e v e a l  a  f r a c t i o n a l  r e a c t i o n  order .  I n  t h e  concen t ra t ions  of TFMSA 

i n v e s t i g a t e d ,  t h e  r e a c t i o n  o rder  of oxygen were between 0.4 and 0.5. I n  t h e  

mix tures  of 1 .OM TFMSA and 0.003 - 0.1M phosphoric a c i d ,  t h e  r e a c t  ion o rder  of 

oxygen inc reased  from 0.5 a s  t h e  c o n c e n t r a t i o n  of phosphoric a c i d  increased.  
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DlSC POTENTIAL , V vs. RHE 
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from 1.0 to 0.3 V vs. RHE 
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I I I 

DlSC POTENTIAL , V vs. RHE 

I 

Fig. 11 The rotating ring-disc electrode data at o = 900 rpm 

for oxygen reduction at Pt in 0.05 MTFMSA. 



potential, 
V vs. RHE 

-0- 0.7 

0.6 
--a- 0.5 I"" ' ' 

F i g .  12 P l o t  o f  l o g  Id vs .  l o g ( 1  - Id/Idl) .  Data were obtained 

from t h e  r o t a t i n g  r ing-disk e l e c t r o d e  experiments 

f o r  oxygen reduct ion  a t  P t  i n  0.05 M TEMSA. 



Mechanism of Oxvaen Reduction a t  Platinum i n  TFMSA 

For t h e  r e a c t i o n  order  of oxygen not equal t o  one, t he  mass t r a n s f e r  

co r r ec t ed  Ta fe l  equat ion i s :  

2.3RT E = --- 2. 3RT l o g  I 
'dl )m 

l o g  I. - - 
a F aF  d ( id l  - Id 

The p l o t  of E vs. log ld [ ld l / ( l d l - ld ) lm  should be independent of u, i f  m is  

chosen properly.  The p l o t s  w i t h  m=0.5 f o r  oxygen reduct ion  a t  platinum i n  

TFMSA and i n  1 M  TFMSA conta in ing  t h r e e  concent ra t ions  of phosphoric ac id  a r e  

shown .in Fig. 1 3  and 14, r e spec t ive ly .  These p l o t s  a r e  independent of o. A t  

% a  given p o t e n t i a l ,  t h e  reduct ion  cu r ren t  decreased a s  t h e  concen t r a t ion  of 

TFMSA of of phosphoric a c i d  increased.  The decrease i n  t he  oxygen r educ t ion  

cu r ren t  i n  concent ra ted  TFMSA i s  probably due t o  a  lower oxygen s o l u b i l i t y  

and/or higher  anion adsorpt ion.  The decrease i n  t h e  oxygen r edac t ion  c u r r e n t  

wi th  t h e  a d d i t i o n  of phosphoric a c i d  i s  due t o  t h e  electrochemical  a c t i v e  

s i t e s  being blocked by the  adsorp t ion  of phosphate ions.  

Based on t h e  proposed mechanism (21,251, t h e  r e a c t i o n  o rde r  of one-half 

w i t h  r e spec t  t o  oxygen can be explained by cons ider ing  a  f a s t  d i s s o c i a t i o n  

s t e p  ( l a r g e  k  and k2 i n  Pig. 15)  and t h a t  s t e p  3  i s  r a t e  determining (smal l  1 

kg). By assuming t h a t  t he  adsorp t ion  of oxygen i s  under Langmuir condi t ion ,  

t h e  d i s k  c u r r e n t  can be expressed by : 

+ 1 1 2  aF 
Id = K [ H  ]  LO2]  exp [ - - rn 

11 2 I n  the  above equat ion Id i s  p ropor t iona l  t o  LO2] . 









Conclusions 

From t h e  r o t a t i n g  ring-disk e l ec t rode  experimental da t a  of oxygen 

r educ t ion  a t  platinum i n  TFMSA, it can be concluded t h a t  ( i )  a  lower oxygen 

r edac t ion  cu r ren t  and a  l a r g e r  amount of hydrogen peroxide were observed f o r  

t h e  oxide-covered platinum sur face  a s  compared t o  t h e  oxide-free sur face ;  (ii) 

a h a l f  r e a c t i o n  order  w i th  respec t  t o  t he  oxygen concent ra t ion  was obtained;  

( i i i )  on t h e  b a s i s  of t he  p re sen t  experimental r e s u l t s ,  a  r e a c t i o n  mechanism 

involving t h e  f a s t  d i s s o c i a t i v e  adsorp t ion  of oxygen followed by t h e  slow 

f i r s t  charge t r a n s f e r  s t e p  was proposed f o r  oxygen r edac t ion  a t  plat inam i n  

TFMSA. 



111. TRANSPORT PROPERTIES OF PHOSPHORIC ACID ELECTROLYTE 

3 .1 LITERATURE REVIEW 

The transport properties of the phosphoric acid electrolyte are needed to 

study the electrode kinetics of oxygen reduction reaction and to optimize the 

fuel cell performance. Punong these, the electric condnctivity, viscosity, 

diffusivity and solubi1it.y of oxygen in the electrolyte are the most important 

properties. 

Electric Conductivitv 

Several sets of cond(uctivity data for phosphoric acid at various 

concentrations and temperatures are available in the literature. Some of the 

early data are presented in the Monsanto Technical Bulletin (261,  which also 

includes unpublished data of Helmer kt al. (27). Increased attention has been 

shown recently in obtaining condactivity at high concentrations and 

temperatures. (28-34); such an emphasis has left a gap in the literature on 

the data of conductivity and other properties. Table 1 summarize the 

available data of electric conductivity (35). It is evident that over the 

concentrations range of 01-855 phosphoric acid, there are no data available for 

0 
temperatures greater than 2 5  C. Also, for the concentrations range of 85 - 

0 
100% H3m4, no data are available for temperatures greater than 150 C. A more 

complete set of data is needed. 

It is suggested that for dilute phosphoric acid concentrations, the major 

contribution to conductivity must come from the Stokesian ion transport, 

whereas in more concentra.ted solutions the major contribution to conductance 

comes from proton switch (chain type) mechanism. The existence of proton 

switch mechanism in water is well established. There are evidences which 

support the existence of proton switch mechanism in H3P04. 



Greenwood and Thompson (32) considered t h e  s e l f  d i s s o c i a t i o n  of anhydrous 

phosphoric a c i d  according t o  t h e  e q u i l i b r i a  : 

-t + - 
2 H PO E4PO4 + H2P04 

3 4 +  [ fas t ]  

-t + - 
2 H3P04 , H30 + H3P207 [slow] 

The f i r s t  equ i l ib r ium i s  l a b e l l e d  f a s t  because t h e  c o n d u c t i v i t y  of f r e s h l y  

melted phosphoric a c i d  i s  h igh  (7.68 r 52-I cm-l). Since t h e  i o n i c  

d i s s o c i a t i o n  i s  v e r y  small  ( a s  low a s  4.5% f o r  t h e  hemi-hydrate), and t h e  

v i s c o s i t y  i s  h igh  f o r  H3P04, t h e  observed h igh  c o n d u c t i v i t y  can not  be 

expla ined i n  terms of S tokes ian  d i f f u s i o n .  This  means t h a t  o t h e r  type of 

t r a n s p o r t  mechanism must have a  s i g n i f i c a n t  c o n t r i b u t i o n  t o  t h e  conduc t iv i ty .  
- 

G i l e a d i  (36) has  represen ted  t h e  switch mechanism f o r  E2P04 migra t ion  a s  

shown i n  Fig .  16, where phosphoric a c i d  molecules and phosphate an ions  a r e  

a s s o c i a t e d  by hydrogen bonds. Under an e l e c t r i c  f i e l d ,  t h e  p ro ton  t ends  t o  

migrate .  According t o  G i l e a d i ,  t h e  swi tching of p ro tons  can be accomplished 

by e i t h e r  r o t a t i n g  o r  t h e  rearrangement of t h e  i n t e r n a l  bonds a s  shown i n  t h e  

f i g u r e .  The l a t t e r  being more f a v o r a b l e  cons ider ing  t h e  l a r g e  energy t h a t  

would be r e q u i r e d  t o  r e o r i e n t  t h e  a s s o c i a t e d  phosphoric a c i d  molecules.  The 

same view p o i n t  of a  hydrogen bonded network has  a l s o  been proposed by Akiyama 

e t  a l .  ( 34 ) .  To support  t h e i r  hypo thes i s ,  these  a u t h o r s  c a l c u l a t e d  t h e  molar 

conductance of concen t ra ted  phosphoric a c i d  assuming both  water  and phosphoric 

a c i d  c o n t r i b u t e  t o  conduction. The c a l c u l a t e d  molar conductance was cons tan t  

between 60 and 76% P20S con ten t .  F u r t h e r  evidence f o r  proton migra t ion  comes 

from t h e  work of Greenwood and Thompson (32) .  They hypothesize  t h a t  i f  a  

c e r t a i n  H-bonding s t r u c t u r e  i s  r e s p o n s i b l e  f o r  p r o t o n  migra t ion ,  then  t h e  

c o n d u c t i v i t y  would decrease  i f  t h e  p r o b a b i l i t y  of H-bond format ion is  

reduced. To prove th i s ,  these  authors prepared t h e  GO-ordinated complex of 

H3m4 and BF3. 



Table .lo S p e c i f i c  Conductivity of Phosphoric A c i d  as  a FunctLon of Concen- 
t r a t i o n  and Temperature. Compiled from References 37, 7, 8 ,  9. 

Temp O C  



Table 1. SPECIFIC CONDUCTIVITY (con t inucd) 

50.0°-170.420 

Temp O C  50 " 55" 60.0 65.0 130.00 140.12 150.25 160.92 170.42 



Fig. 116 A schematic diagram of the hopping 

mechanism in H PO 
3 4 



The v i s c o s i t y  and e l e c t r i c  conduct iv i ty  of t hese  complexes were markedly 

d i f f e r e n t  from those of H3P04. These r e s u l t s  could be explained only by t h e  

presence of a  hydrogen bonding network i n  H3P04. Munson (38) s t u d i e s  t h e  

e f f e c t  of va r ious  ion ic  s o l u t e s  on the  conduction of H PO and came t o  t he  
3 4  

same conclus ions  a s  those of Greenwood and Thompson. 

K ine t i c  V i scos i ty  

The e x i s t i n g  l i t e r a t u r e  da t a  on t h e  kinematic v i s c o s i t y  of phosphoric 

a c i d  a r e  summarized i n  Table 3-2. The accuracy of t h e  da t a  i s  es t imated  t o  be 

+ 15%. Sa j i  (40) repor ted  v i s c o s i t y  da t a  f o r  concentrated phosphoric a c i d s  - 
which devia ted  from t h a t  r epo r t ed  i n  Table 2; t h e  d i f f e r e n c e  occurs  red  

r 

because t h e  ac id  was dehydrated by heat ing and con ta ins  higher  propor t ions  of 

Poly-acids. The e f f e c t  of va r ious  impur i t i e s  l i k e  A l ,  Fe, k,  Ca, Mg on t h e  

v i s c o s i t y  of phosphoric ac id  has been discussed by Cate and Deming (411, and 

by Dahlgren (42) .  The c a t i o n s  increase  the  v i s c o s i t y ,  while  anions have 

n e g l i g i b l e  e f f e c t .  The e f f e c t s  a r e  n e g l i g i b l e  a t  t h e  concent ra t ion  below 0.1% 

by weight of t h e  impurity; t h e  magnitude of t h e  e f f e c t  i s  a l s o  dependent on 

t h e  concen t r a t ion  of t h e  phosphoric ac id .  

A s  seen i n  Table 2,  t h e r e  a r e  some gaps i n  t h e  kinematic v i s c o s i t y  data .  

0 
For 0-85% H3P04, no da t a  a r e  a v a i l a b l e  f o r  temperature g r e a t e r  than 180 C. 

The kinematic v i s c o s i t y  da t a  have been c o r r e l a t e d  by Kondrachenko e t  a l .  

(43-44) w i t h  a  polynomial equat ion f o r  t he  concent ra t ion  range 90-10340 H3P04 

a t  temperature from 20 t o  90'~. 
- 



Table 2 KINJZMATIC V:tSCOSITX OF PEOSPHOBIC ACID SOLmIONS 

0 
Temperature, C 

25 30 40 50 60 80 90 100 110 u 0  l30 140 150 160 170 180 



Diffusivitv and Solubility of Oxvaen in Phos~horic Acid Electrolyte 

Oxygen solubility in concentrated phosphoric acid solution was first 

determined by Gubbins and Walker (45) using a gas chromatrographic method. 

Yatskovskii and Fedotov (46) measured the solubility and diffusivity of oxygen 

0 0 
at 25O, 45 and 60 C as a function of the phosphoric acid concentration (up to 

85% by weight) using an electrochemical method; in this method, a platinum 

wire was sealed into. a capillary and oxygen diffused to the electrode through 

the open end of the capillary. Klinedinst et al. (47) extended the 

measurement from 85% to 96% acid concentrations. The authors used a diffusion 

current-time curve to a platinum wire electrode to determine the oxygen 

solubility and diffusivity. 

There was reasonable agreement between the results of Gubbins et al. and 

those of Yatskovskii et al.; in both these investigations the solubility 

decreased with concentrations of the acid. The results of Klinedinst et al. 

were consistent with those of Gubbins and Walker at a given concentration and 

temperature, bnt the concentration dependence was exactly opposite to that 

observed by Gubbins. The activation energy for oxygen diffusivity reported by 

Klinedinst was also different from the value calculated by Yatskovskii et al. 

Unfortunately, a critical comparison of these results is not possible since 

Klinedinst did not carry out measurement for  the concentrations lower than 85% 

at 25'~. 

3-2 EXPERIMENTAL 

In the present work, the electric conductivity and kinematic viscosity of 

phosphoric acid electrolyte have been measured over a range of concentrations 

0 
from 7% to 10096, and the temperatures from 25 to 200'~. 

Electric Conductivity 

Electrical conductivity data were measured with an A.C. conductivity 

bridge and conductivity cell (Beckman). The cell constant of the conductivity 

cell was calibrated with standard 0.01 N kc1 solution. 



The specific condizctivity of phosphoric acid was measared over a 

0 
concentration range of 0-100% and a temperature range of 25-200 C. The 

electrolytes were made from stock 85% phosphoric acid (Fisher). For 

concentrations 0-85% acid. the different solutions were diluted from 85% H3P04 

with distilled water. For concentrations greater than 85%, the solutions were 

made by concentrating purified acid inside a vacuum oven. The solution was 

poured into a three ann round-bottom flask, and immersed in an oil bath. A 

reflux column was used to condense any vapor at high temperatures (greater 

than 10oOc.) A thermometer was used to monitor the temperature of the solution 

for each concentration, the specific conductivity data for different 

0 
temperatures were taken at a 10 C temperature increment. 

Kinematic Viscosity 

Kinematic viscosity data were measured with a Canon-Fenske viscometer 

made by Industrial Glass Co. The time constants of the vocometers were 

calibrated against water and glycerol solutPons at different temperatures. 

The range of concentrations measared for kinematic viscosity was the same as 

that of specific conductivity. The temperature range was slightly different; 

it was from 25 to 180'~. The measurement was carried out in a constant 

temperatnre air oven. 

3.3 RESULTS 

Electric Conductivitv 

The specific condr~ctivity of phosphoric acid solution has been measared 

over a concentration range of 6-100% (by weight) and a temperatnre range of 

25-200'~. The data are presented in graphical form in Figs. 17-22. 

Figure 17 is a plot of specific conductivity as a function of 

0 
concentrations at 25, 100 and 170 C. For each temperature, the curve exhibits 

a maximum at a certain concentration; this maximum shifts toward higher 

concentration with increasing temperature. Figures 18-22 are the 



semi-logarithmic plots of specific conductivity versus reciprocal of absolute 

temperature at different concentrations. Figure 1 8  is for concentration range 

of 0.05 to 2.37 M phosphoric acid. It is seen that conductivity increases 

with temperature and that straight lines can be drawn for the conductivity at 

the low concentrations. At higher concentrations, the Arrhenius type 

correlation does not hold, This can be seen in Figs. 19-22; for there 

concentrations, a second order polynomial fit of In k vs. 11T should give a 

better description of the experimental data. 

Kinematic Viscosity 

The kinematic viscosity of phosphoric acid was measured for the 

0 
concentration range of 6-100% and the temperature range of 25-180 C. The data 

are presented graphically in Figs. 23-27. 

Figure 23 is a plot of kinematic viscosity as a function of 

concentrations at 25, 100, and a70°c. The kinetic viscosity increases 

exponentially as the concentration increases. However, the increases becomes 

less drastic at high temperatures. The kinetic viscosity decreases with 

increasing temperature, Figures 24-27 are the semi-logarithmic plots of 

kinematic viscosity versus reciprocal temperatures at different 

concentrations. The kinematic data seem to obey the Arrhenius law at the 

concentration and temperature range investigated. 
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Figure 18 Plot of specific conductivity versus reciprocal temperatures at 

dilute concentrations 
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Figure 1 9  P l o t  o f  s p e c i f i c  conduct iv i ty  versus rec iprocal  temperatures a t  3 .6  
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Figure 22 Plot of specific conductivity versus reciprocal temperature at 

concentrates H3POq 
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Figure 25 Plot of kinematic viscosity versus reciprocal temperatures at 

conc. range 4.16 to 7.73 M 







3.4 CONCLUSIONS 

(1) The electric conductivity of aqueous phosphoric acid solution has been 

measured over a range of concentrations from 0 to loo%, and temperatures 

from 2 5  to 2 0 0 ~ ~ .  Attempts were made to correlate the experimental data 

with the Arrhenius type expression; and the partial success was obtained 

for the data up to 2.37 1 phosphoric acid. 

(2) The kinematic viscosity of phosphoric acid as functions of concentraion 

and temperature was measured for the concentration range of 0-100% and 

the temperature range of 25-180'~. The data were described by the 

Arrhenius law. 
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V NOTATION 

Symbol Description 

a cross-section area 

dif fusivity of oxygen 

D2 
diffusivity of hydrogen peroxide 

E electrode potential 

Ez potential of zero charge 

F Faraday' s constant 

I Cell Current 

Id 
Disk Current 

Id1 
mass transfer limiting current at disk electrode 

Ik kinetic current at disk electrode 

I0 exchanging current 

I ring current 
r 

5 flux of ions 
K overall rate constant 
k cell constant of a conductivity cell 
ki rate constant of step i 
L specific conductance 
1 length of the conductivity medium 

Unit 

V vs. RHE 

V vs. RHE 

Clmol. 

A 

A 



Symbol Description Unit 

m reaction order of oxygen 

N collection efficiency 

R gas constant 

R resistance 

T temperature 

GREEK SYMBOLS 

a transfer coefficient 

eeff energy conversion efficiency 
X specific conductivity 

v kinematic viscosity 

o rotating speed of electrode 

0 
J/mol. K 

ohm 

2 
dm / S  in Ch.2 

(centistoke in Ch. 3 )  
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ABSTRACT 

The previous theoretical treatments of the rotating ring-disc electrode method to distinguish between 
the mechanisms of electroreduction of 0, to H,O with and without the formation of H 2 0 2  as an 
intermediate. were examined. A new expression was derived for I , , / (  I,, - I,) as a function of u - " ~  
(where I,, is the disc limiting current. Id is the disc current and o is the rotational speed of electrode) for 
five possible reaction models. This. along with the corresponding expressions for I,/I, vs. o-"l ( I, is 
the ring current). enables the calculations of the individual rate constants for the interme9iate steps of O2 
reduction. The experimental data of Id and I, were obtained for 0, reduction on platinum in 0.55 .W 
H,SO, at 25°C. By use of these experimental results in the present theoretical treatment. it is shown that: 
( I )  the most applicable model over the entire potential region was the one suggested by Damjannvic. 
Genshaw and Bockris: (2) the models involvin_n the adsorption/dcsorption of H20, were applicable only 
over a narrow region of potential: and (3) the models involving the chemical decompoiitinn of H20,  were 
inconsistent with the dependence of Id l / ( Id ,  - I d )  VS. " - I / ' .  

INTRODUCTION 

The rotating ring-disc electrode (RRDE) technique has been extensively used for 
the investimtion of the mechanism of the 0: reduction reaction in which H,Oz is 
formed as an intermediate [I-5-91. In this method, the reduction of 0, takes place on 
a central disc electrode and the generated H20 ,  is detected at a concentric- ring 
electrode with a. ltirger radius. Damjanovic et al. [2] proposed a criterion to 
distinguish two possible reaction mechanisms of O2 reduction from the plot of the 
ratio of the disc (I,) to the ring (I,) currents vs. the reciprocal of the square root of 
the electrode rotating speed (a). The first mechanism is a direct reduction path 
which reduces 0, to H,O through a four-electron transfer step. The second mecha- 
nism is a series reaction path where 0, is first reduced to H,O, followed by the 
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Fig. I. Models for the elatroreduction of 4 proposal by (a) Darnjilnovic et al. [:I. (b) Wroblowa ef al. 
(31. (c) Appleby and Savy [4], (d) Zunlla ec al. 151. and (e) Bagotskii et al. [IO]. 

reduction of H,O1 to H20 .  These two reaction paths are presented in Fig. la. 
Wroblowa et al. [3] considered the adsorption-desorption step of H 2 0 2  at the disc 
electrode (Fig. Ib) and developed a method to determine the mechanism of 0, 
reduction from the plots of [ , / I ,  vs. w - ' / I  and of the intercept vs. slope of the 
former plot at different potentials. The theory was extended by Appleby and S a y  
[4] to porous electrodes to include the catalytical decomposition of H202  to 0, and 
H 2 0  (Fig. Ic). Zurilla et al. [j] proposed a reaction rnodel for O2 reduction on Au in 
alkaline solution where only the series reaction path was considered (Fig. Id). For a 
given set of experimental data. the use of different models leads to different 
conclusions as w.as first pointed out by Zurilla et al. [5 ] .  For example. i f  the intercept 
of the plot of [ , , / I ,  vs. w- ' ' is greater than the reciprocal of collection efficiency of 
the RRDE ( I,/iV). then according to Zurilla's rnodel the conclusion will be that 0: 
reduction is 0n1;i via the series reaction path. However. i f  one uses the rnodel by 
Damjanovic ct 31. ['I. the same result would suggest that O? is reduced to H,O via 



both the series reaction path and the direct reduction path. 
A quantitative understanding of the kinetics of 0, reduction is as important as 

the qualitative determination of the mechanism of 0, reduction. Several papers were 
devoted to the evaluation of the rate constants of the intermediate steps for the 0, 
reduction reaction. On the basis.of the equations derived by Damjanovic et al. 
[2.6.7]. the rate constant k, and the ratio of k, to k, (see Fig. la for the definition of 
symbols) can be obtained from the intercepts and slopes of a plot of I , / I ,  vs. @-I/,. 

Bagotskii et al. 18-14] derived two sets to equations: one for an electrolyte saturated 
with 0: and the other for an electrolyte containing only H201. From the set of 
equations. a procedure was developed to calculated the rate constants k, ,  k,, k-,. k, 
and k, (Fig. le). Huang et al. [IS] used the same method as Wroblowa et al. [3] to 
calculate k,/k2 and k, (Fig. Ib) for oxygen reduction on Pt in 85% phosphoric acid. 
Appleby and Savy [4] derived two equations for N I , / I ,  as a function of @-I/'. One 
equation was concerned with the reduction of 0, with H,O, as a reaction inter- 
mediate and the other equation was concerned with the reduction of H,O,. The rate 
constants were obtained from the intercept and the slope of the plot of NI, / I ,  vs. 

0 2 , D - L 2 , 1 ~ ~ 2 0 2  .A I 
Model  3 

[ k4 / 

kt 

Model 4 0 2 , n - d 2 . . ~ n 2 0 2 ,  k 3  -40 
kb 4rk5 

H P 2  * 
t 

H 2 0 2 . 3  

N. 

M o d e l  5 

" 2 0 2 . .  

I 

Fig. 2. Reaction schemer for the elcctroreduction of 0, considered in the present work. 



u-"' at  different potentials. Based on a reaction model proposed by Bagotskii et al. 
(Fig. le). Van d m  Brink et al. [I61 calculated the value of k ,  by measuring the ring 
current in a solution containing only H,O,. while the disc was kept a t  the 
opencircuit potential. 

The purpose of this work is to modify previous theoretical treatments of 
Damjanovic et al.. Bagotskii et aI. and Wroblowa et al.. in order to calculate most of 
the rate constants for the intermediate steps of the models in Fip. 2. The rotating 
ring-disc electrode experimental data obtained for 0, reduction in Pt in 0.55 LM 
H,SO, are used to illustrate the calculations of rate constants according to the 
present theoretical treatments. An analysis of the applicability of the various models 
is also made! in this paper. A knowledge of the rate constants is essential in 
elucidating t t~e  role of electrocatalysts, electrolytes and anion adsorption on oxygen 
reduction kinetics and should lead to a rational basis for the selection of electrodes 
and e1ectrolyl:es for oxygen reduction in fuel cells and metal-air batteries. 

UODIFICATION OF THEORETICAL TREATLlESTS FOR THE CALCULATION OF RATE 
CONSTANTS 

The main aim of the present theoretical work is to derive mathematical expres- 
sions which would permit the calculations of the rate constants of the intermediate 
steps for the O2 reduction reaction from the rotating ring-disc electrode experimental 
data. For this purpose. each of the reaction models depicted in Fig. 2 will be used. It 
is assumed that oxygen reduction is taking place in the Tafel regime for both direct 
and series reduction paths such that the values of k -  ,. k-2 and k - ,  are small and 
can be neglected in the analysis. In this section. the mathematical expressions are 
derived in detail for I,,/( I,, - I,) and I,//, as a function of c for the model 
suggested by Damjanovic et al. (1Model 1. Fig. 2). For the sake of brevity of this 
article, only the final expressions for Id,/( I,, - I,) and Id/!, are presented for the 
other four models (see the Appendix). 

Consideration of material balances for 0,. and H202 . .  specles in the model 
proposed by Damjanovic et al. (Model 1. Fig. 2 )  iields the folio\\-ing equations: 

~ , o " ' ( c , ,  - c,.) - ( k ,  + k z ) c , .  = O(for 0,;) ( 1 )  

k 2 c , .  - ( k ,  + Zlw''2)c2. = O(for H20:..) (2 )  

where 

The disc ( I, ) and ring currents ( I, ) are $\.en by: 

From eqns. ( I ). (1). ( 5 )  and ( 6 ) .  the reI;1110n hctueen the c i ~ n i c n r r ~ t ~ n n  of 0,. and 



that of O,, can be expressed by: 

It has been observed 16.71 that the ring current is much smaller than the disc current 
for O2 reduction (I, e I, and I,, a I,,). Therefore, eqn. (7) can be simplified to: 

c l *  s ~ I b l l  - I d 1 d l 1  (7a) 

Rearranging eqns. (2). (5) and (6), yields: 

which is the same equation derived by Damjanovic et al. (21. Combining eqns. (l), 
(5) and (7a). gives: 

This simple equation, which in combination with eqn. (8) is most valuable for 
calculating k, and k,  independently. has not been derived in any of the previous 
theoretical treatments. The rate constants k,, k2 and k, are calculated from the 
intercepts and slopes of the plot of I,,/Ir vs. and from the slopes of the plot of 
I,,/( I,,, - I,) vs. w-'/' at different disc potentials. These rate constants are given by 
the expressions: 

k, = ZzNSI/( I, N + I) (12) 

By utilizing a similar procedure, the rate constants for the other four models (Models 
2-5. Fig. 2) can also be calculated. The details are summarized in tlre Appendix. 

EXPERIMENTAL 

A glass cell with one compartment for the test and auxiliary electrodes and 
another for the reference electrode was used in the electrode kinetics experiment. A 
platinum ring-disc electrode (Pine Instrument) with a collection efficiency of 0.176 
served a; the working electrode. It was mechanically polished with 25 pm and 5pm 
polishing powder and then with 1 pm and 0.25 pm diamond paste before the 
experiment. Potentials were measured against a dynamic hydrogen electrode (DHE) 
and the readings were converted to a reversible hydrogen electrode (RHE) scale. A 
large platinum gauze was used as the counter electrode. The potentials of the disc 
and the ring electrodes were controlled by a potentiostat (Pine Instrument RDE 3) 
and the rotational speed of the electrode \vas controlled by an analytical rotator 



(Pine Instrument ASR 2). The currents at the disc and ring electrodes were recorded 
on a dual pen X-Y'-Y' recorder (Soitec 6431). 

The cell. the electrodes and the other glassware were cleaned with chromic acid 
(0.1 mol K,Cr,O, dissolved into 1 I H2S0,) followed by soaking in a 1 : 1 
H,SOJHNO, solu.tion for 8 h and then in double distilled water for another 8 h. 
The 0.55 iM H,SO., solution was prepared by diluting concentrated H2S0, (ultra 
pure. Alfa. Ventron Div.) with double distilled water. The purity of the solutions was 
ascertained by the c:yclic voltammetry. The cyclic voltammograms at a scanning rate 
of 50 mV/s between 0.05 and 1.45 V vs. D H E  were recorded after the solution had 
been deaerated N2 gas. 

Before starting tlxe RRDE experiments. 0: (99.9998 pure) tvas bubbled through 
the electrolyte for 1 h. During the RRDE experiments. the potential of the disc 
electrode was scanned from 1.0 to 0.3 V vs. DHE at a scan rate of 5 mV/s, while the 
potential of the ring electrode was maintained at 1.1 V vs. DHE (this is a limiting 
current potential for the oxidation of H20,  to 0: ). Experiments tvere carried out for 
a range of rotational speed from 100 to 4900 rpm at 25OC. Both S: and O2 gas were 
purified by passing the gases through three columns of m o l ~ u l a r  sieves 
(Alumina-Siiicate basis. Union Carbide. Linde Div.). The first column of molecular 
sieve was heated to 200-300°C and the other two columns were at room tempera- 
ture. 

RESULTS AND DISCIJSSIOX 

Mass transfer corrected Tufel behacior 

From the RRDE experimental data. a plot of 111, vs. w - '  ' (Fig. 3) was made 
over the potential region from 0.7 to 0.4 \' vj .  RHE. In order to obtain I; from I,. 
the surface area of the disc electrode rvas calculated from the total charge of 
H-adsorption in the cyclic vo l t ammo~am of Pt in 0.55 .\I HISO,. The average 
solubility-diffusivity factor. D;, 'c,, as calculated from the slopes of the plot of I / I ,  
VS. (for the potential range from 0.6 to 0.4 V vs. RHEI is' 6.4 x 10-I" 
( ~ m ' / s ) ~ "  (mol/c:n3). From t h s  value. the limiting current .densities ( I , , )  at 
different rotating speeds of electrode were calculated. 

The mass transfer corrected Tafel equation is gl\.en by: 

RT E = ----- RT id , ' ,  
log y -. 7 3 a t 1 ~ " ~  "j -- [ [ d l  r , ]  

Fig. 4 shows a mass tranjfer corrected Taiel plot c E vs. log I,,/,, [r,, - I,]) for 0: 
reduction on Pt In 0.55 .it HISO, (pH = 0). \Vithln an accurac? oi = 5'; .  this Tafei 
behavior is independent o f  r; ivhich covers the range of rotational .pc=ds from 400 to 
4900 rpm. The apparent lirnlt~ng current den.iit\ tthich is also ~ndependrnt of c: is in 
all probability cawed by a chemical rrxtlon control prior to the first electron 
transfer step. The indication i, that the adsorption of 0: I >  probably the rate 
determining step in the pcltentiai reeion more nepatlve rh:m 0.5 \. \,. RHE: further 
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the horizontal axis 15 for the mass transfer corrected current densit!. I , , I , / ( I , ,  - i d ) .  



study within this potential region should give more insight into the oxygen adsorp- 
tion phenomenon. 

Evofuation of the rate constants 

The two critical expressions for the calculation of the rate constants are: ( I )  
I , , / ( I , ,  - I d )  as a function of o - I / ' ;  and (2) I J I ,  as a function of o - ' I 2  (except 
for %lode1 3 where it is assumed that there is no ring current). Figure 5 shows that 
the plot of I d l / ( , f d ,  - I , )  vs. u - ' / ~  at different electrode potentials exhibits a linear 
behavior with an intercept equal to 1. This linear relation between I , , / ( I , ,  - I , )  and 
o-'" indicates that k, is relatively small. For the models involving k,, this plot will 
not be linear (set: Models 2. 3 and 5 in the Appendix). 

The plots of , f d / I r  vs. w- ' / '  at various electrode potentials are given in Fig  6 
(from 0.75 to 0.55 V vs. RHE) and in Fig. 7 (from 0.55 to 0.35 V vs. RHE). From the 
plots of I , / I ,  vs. w-I.". it can be concluded that the reaction mechanism undergoes 
a change as the-electrode potential is shifted toward the negative direction. This 
becomes obvious if one examines the potential dependence of the intercepts and of 
the slopes of the straight lines of I,,/[, vs. o-'/' as shown in Fig. 8. The slope 
decreases as the potentiai becomes more negative in the potential region I (0.8 >, E >, 
0.7 V vs. RHE). In the potential region I1 (0.7 3 E 3 0.5 V vs. RHE). the slope 
remains constant and the intercept decreases with decreasing potentials. ln region I11 
(0.5 > E. V vs. RHE). the slope increases and the intercept decreases as the potential 
decreases. 
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Fig. 6. I , / ! ,  vs. u - ' / ~  in the potential region 0.75-0.55 V vs. RHE. 

Using Model I. it is possible to calculate the rate constants over the entire 
potential range (from 0.8 to 0.4 V vs. RHE); the rate constants as a function of 
electrode potential are presented in Fig. 9. The potential dependence of k ,  is nearly 
the same as the mass transfer corrected Tafel behavior. The ratio of k ,  to k, is about 
5-12 and is potential dependent. Since k, is larger than k2, 0, is mainly reduced to 
H 2 0  via the direct four-electron transfer reaction path and only trace amounts of 0, 

POTENTIAL/ ELECTROLYTE 
V vs. RHE +SO4 (0.55 M) 
+ 035  
-0-- 0 4  
--&- 045 
-0- 0.53 * 0.55 

w.v2/ 1'12 

Fig. 7.  I , / \ ,  vs. u-' ' In the potential regon 035-0.35 V vr. RHE. 
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Fig. 8. Potential d c v n d c n c e  of  the intercepts and the s l o p a  obtarned from the plot of ! , / I ,  vs. w-I!'. 

are reduced to H20 via the series reaction path which involves H20, as an 
intermediate. The rate constant k, is greater than k,. This indicates that H,O, is 
reduced to H20 at a relatively rapid rate. Therefore. only a little amount of H202 
diffuses into the bulk electrolyte as evidenced by the small ring currents. The 
faradaic efficiency for 0, reduction is about 97%. 

. 
. 
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* s2 
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ELECTROLYTE I 
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MODEL I 

I 
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Fig. 9. Rate consc;lnrb of  ~nttrmedirte steps for 0, rducilcm on )PI In 0.55 I t  H :SO,. Thcje c o n s i a n t ~  
were calculated based o n  Model 1. 



Inapplicability of some of the proposed modek 

m e  linear behavior of Id l / ( Id ,  - I,) vs. for Pt in H,SO,, suggests that k, 
is negligibly small. An attempt has been made to evaluate the values of k, from the 
present experimental data according to Model 2 for which the exprcssio~~ of 
Id l / ( Id l  - I d )  VS. @-'I2 is not linear (see the Appendix). The accumulated errors in 
the non-Iinear curve fitting procedure were quite large. and because of the small 
values of k, some calculations even resulted in a negative value for k,. 

Since a ring current was observed for the 0, reduction on Pt in 0.55 M H'SO,, 
Model 3 can be excluded. The sum of the rate constant (k ,  + k,) calculated using 
this model is higher than the value based on Model 1. 

In order to calculate the rate constants k,, k,. k, and k,/k, according lo Model 
4, it is necessary to have a linear relationship between the intercepts and the slopes 
(obtained from the plot of I,/I, vs. w- ' / '  at different potentials). In a previous work 
[17] such plots have been found to be linear only over a limited range of potential. A 
plot of intercept vs. slope from the present experimental data is given in Fig. 10. The 
non-linear behavior of the data points indicate that the assumption of k,/k, being 
independent of potential is not correct as evidenced by the results shown in Fig. 9. 

The same problems were also encountered with Model 5. Only over a narrow 

I J 
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Fig. 10. Intercepts us. slopes obtaii~ed from the plot o f  I , , / I ,  vs. w -  ' ' I Fips. 6 and 7). 



potential region was it possible to obtain acceptable values of rate constants. The 
calculations sonmetimes even led to negative values of rate constants. It should be 
noted that Model5 is the most complete reaction scheme for 0, reduction. The [act 
that it did not Eit the present data is probably caused by too many unknowns (nine) 
and insufficient number of independent equations (five) as shown in Appendix (E). 
Additional expe:riments, such as oxidation or reduction of H,O, in the electrolyte 
without the presence of O2 will be needed to evaluate all the rate constants in the 
model. 

A theoretical and experimental study has been camed out for the 0, reduction 
reaction on a platinum rotating ring-disc electrode in 0.55 LM H,SO,. The analytical 
procedures for the calculation of the intermediate reaction rate constants were 
developed for various reaction models. It was found that a simple reaction model as 
proposed by Damjanovic et al. is consistent with the present experimental data. The 
results indicate that 0, (97%) reduces to H1O via a direct four-electron transfer 
reaction. At potentials more negative than 0.5 V vs. RHE, a chemical reaction step 
or an adsorption process prior to the charge transfer reaction becomes the rate 
controlling step. 
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NOTATIONS 

Symbol 
Clh  

C I *  

c2.  
D, 
Dl 
E 
F 
fd 

1, 

Description 
concen~tration of oxygen in the bulk solution 
concentration of oxygen war the electrode 
concentration of HZ02 near the electrode 
diffusi,vity of oxygen 
diffusi,vity of H1O, 
electrode potential 
Faraday's constant 
disc current 
ring current 

Lilit 
mol/cm3 
mol/cm-' 
mol/cm' 
cm2/s 
cm2/s 
V vs. RHE 
C/mol 
A 
A 



intercept of the plot of IJI, vs. w - ' / ~  
disc current density 
ring current density 
disc limiting current density 
ring current density at disc limiting current condition 
rate constants of step i 
collection efficiency 
charge number of electron transfer per mole of O2 
gas constant 
surface area of disc electrode 
slope of the plot of Id/Ir vs. o- 
slope of the plot of Idl / ( Id l  - Id )  vs. w - 
temperature 
transfer coefficient 
kinematic viscosity 
rotational speed of electrode 

APPENDIX 

(A)  Model 1 (reaction scheme proposed by Damjanmic et al. [?I) 
k7 

k2 k3 Reaction scheme Q,a-A2,. -,.,202. .-H!o 

I 
"z0z.a 

Assumptions ( 1 ) No catalytical decomposition of H,O,. 
( 2 )  The adsorption and desorption reactions of H,02 are fast 
and in equilibrium. 
(3) Rate constant for electrochemical oxidatidn of H,0, is 
negligible. 

Material balance For 02..: Z I o 1 / * ( c I ,  - c , . ) -  ( k t  + k 2 ) c I .  = 0 
F ~ r H ~ O ~ : k ~ c , . - ( k , + Z ~ o ' / ~ ) c ~ . = O  . 

Expressions for Disc current: Id = 2SDF[(2k l  + k 2 ) c l .  + k,c2.] 
current Ring current: Ir = Z S ,  F N Z , W ~ / ~ C ~  

Expression for 
the calculation Id/Ir = N 
of rat; constants -- k + k  Id1 -,+ 1 2 - l / 2  

W 

Id1 - I d  z 1 
Expressions for I I N -  1 

rate constants k ,  = S2Z - ' I 1 N +  1 



where I ,  and S, are the intercept and slope of the plot of 
Id / I ,  vs. u - " ~ ,  respectively. S2 is the slope of the plot of 
Id,/(  Idl - I d )  VS. 0- I". 

(B )  Model 2 (reactron scheme proposed by Bagotskii et al. [9]) 

k. 

Reaction scheme 0, , - A , . , ~ n , o , , .  LAO 
wt 

n202.0 

Assumptions (1) The adsorption and desorption reactions of H20z  are fast 
and in equilibrium. 
(2) Rate constant for electrochemical oxidation of H,02 is 
negigible. 

Material balance For 02.: Z,01 /2(c , ,  -cI.)+k4c,. - ( k ,  + k2)c, .  = O  
For H20r.: k2c,. - ( k ,  i- k ,  + Z2w'/2)c2. = 0 

Expressions for Disc current: Id = 2SDF((2k ,  + k2)c , .  + k,c,.] 
current Ring current: I ,  = ~S,FNZ,U' /~C, .  

Expressions for ( k ,  + k 4 ) ( l  + 2 k ~ / k l )  + k ~ w - I / 2  
the calculation NZ2 - .  
of rate constants 

( I  + kl+,k2.-1/2 
Id l -= 

Expressions for k ,  = A , ( 1 2 N -  l ) / ( I I N  + 1 )  
rate constants k 2  = 2A1/(12N + 1)  

k ,  = ( S 3 N Z 2  - 12NA3)/(12N + 1 )  
k , = A ,  
where I2 and S, are the intercept and slope of the plot of 
I J I r  vs. a - 1 / ' .  A: and A ,  are obtained by least square 
fitting of the equation: 

where AI = k, + k, and A, = k 4  



(C) Model 3 (reaction scheme for oxygen reduction in which no ring current can be 
detected) 

k 1 

Reaction scheme I kz 
oz,a-oz,,-H 0 A& t k. / 2 z a  

Assumptions (1) No H 2 0 2  diffuses into the bulk. 
(2) Rate constant for electrochemical oxidation of H,O, is 
negligible. 

Material balance For 4 . :  ZIu ' / ' ( c lb  - c,.) + k4cZ. 
- ( k ,  + k,)c,. = 0 

For H,O,.: k,c,. - ( k 3  + k4)c,. = 0 
Expressions for Disc current: Id = 2SDF[(2k, + k,)c,- + k3c2.] 

current 
Expressions for Id I Id k 2 k 3  = 2k1 + k, + - 

the calculation ~ s ~ F ~ ~  h( ldl - ld)  k3 + k4 
of rate constants Id I 1 k 4 k 2  - = 1 + - ( k l  + k ,  - - 

Id1 - Id zl k 3  + k 4  
) @ - I L 2  

Expressions for k ,  + k , -  Id Id  I 

rate constant 
- ZlS4 

2sDFclb( Id, - Id) 
where S4 is the slope of Id l / ( Id l  - Id )  vs. 

(D)  Model 4 (reaction scheme proposed b? Wroblowa et al. [3] with k ,  neglected) 

k. 

Reaction scheme 

Assumptions 

Material balance 

Expressions for 
current 

Expressions for 
the calculation 
of rate constants 

(1) No catalytical decomposition of H20, .  
(2 )  Rate constant for electrochemical ,oxidation of H,O, is 
negligible. , 

(3) k ,  and k ,  have the same potential dependence. 
For O,..: Z1ul  ' ( c l b  - c i s ) -  ( k l  + k 2 ) c I .  = 0 
For H,O,.: k,ci. + k,c,. - ( k , +  k,)c,,=O 
For H,O,.,: k,c,, - ( k ,  + Z2w1/?)c2. = 0 
Disc current: I ,  = 2SDF[(skt  + k,)c,. + k,cl,] 
Ring current: I ,  = Z S , F N Z , C ~ . ~ ' / ~  



Expressions for - s2zl(14 - I)/(I4 + 
rate constants k, .I 2SzZ1/(14 + 1) 

k6 = Z J S ,  
k, /k ,  - S,Sd(14 + 1) 
where S2 is the slope of the plot of I,,/(I,, - Id )  vs. w-' / ' .  
I, and S, are the intercept and slope of the plot of I,/?, vs. 

respectively. I, and S, are the intercept and slope of 
the plot of NI, vs. NS5. respectively. 

IE) Model 5 freacrion scheme proposed by Wroblo~va er ul. [3]) 

Reaction scheme 

Assumption 

Material balance 

Expressions for 
curren L 

Expressions for 
the calculation 
of rate constan1:s 

*. 
* Z  

02,,-d2 .-~z~z.s ~ 2 0  
W 6 4 t  k5 

ntoz.. 
I 

H 2 0 2 . s  

( 1 )  Rate constant for electrochemical oxidation of H 2 0 ,  is 
negligible. 
For OL.: z ~ w ~ / ~ ( c ~ , ,  - c,.)+ k4c2= - ( k l  + kZ)c l .  = 0 
For HIOLa: k2c1. + k6c2. - ( k ,  + k 4  + k5)c14 = 0 
For HIOL.: k5cZa - ( k ,  + Z , W ' / ~ ) C ~ .  = 0 
Disc current: Id = 2SDF[(2k,  + k2)c , .  + k,c,.] 
Ring current: I ,  = Z S ,  F,VZ,ui/'ct. 

Id 1 -= 
( k ,  + k 2  - z,u'/') 

I J I  - IJ (y + 

k j  - - z,,,'/' 
2 s D  F N Z , ~ ~ / ~ C , ,  

Id 1 - = - 1  c 2 -  k ,  + [ 2  k l ( k , +  k , )  +- 2k3 + k ,  
Ir N k2 k2k5 k ,  

1 

1 k , ( k 3  + k , )  2k3 + k ,  k, 
t- + - - u - 1 / 2  

.V k'k,  k5 Zz 

Expressions of A ? [ I ~ N -  I - ( Z ~ A ~ S , / A , ) ]  
rate constants I =  I , . V + ~ - - ( Z , A , S , ~ V / A , )  

k :  = 
2'4, 

I,,V + 1 - ( Z 2 A 2 S 7 L V / A I )  
k, = d , / A ,  

k,,/!i, =.4' 
xhtre 1, and S7 are the intercept and slopt: of the plot of 
I,:,'I, vs. w - ' ,  '. A , .  .A2 and A ,  are obtained from the least 



square fitting of equation: 
Id Idl-Id A,  + A ~ Z ~ W ~ / '  = A ,  + z ~ w ~ / ~  - - 

~ S , F N Z , O ' / ~ C , ,  [ ( r d - r d l ) ] r d l r r  

where 

A,  = k,k, /k5 
A* = k 4 / k 5  

A , = k , + k ,  
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Effects of Phosphoric Acid Concentration on Oxygen Reduction 
Kinetics a t  Platinum* 
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ABSTRACT 

The oxygen reduction reaction was investigated at platinum electrodes in phosphoric acid in the concentration range 
0.7M (6.6%) to 17.5M (95%) at 25°C usingthe rotating ring-disk electrode technique. As a complement, cyclic voltammograms 
on platinum and potentials of zero charge of mercury were obtained as a function of phosphoric acid concentration. The 
mechanism of the oxygen electrode reaction is discussed in terms of the direct four-electron transfer reduction to water and 
the formation of hydrogen peroxide as an intermediate in a parallel two-electron transfer reaction. The rate constants of the 
intermediate reaction steps were calculated from the ring-disk data for various potentials and electrolyte concentrations. 
The characteristics of the reaction were found to be markedly dependent on the concentration of phosphoric acid. These 
results are interpreted in terms of changes in oxygen solubility, proton activity, and double layer characteristics when 
passing over from a water to a phosphoric acid solvent structure. 

Concentrated phosphoric acid is; presently used as 
the electrolyte in advanced fuel cells. The factor limit- 
ing the efficiency of this fuel cell system is the over- 
potential for oxygen reduction reaction in the concen- 
trated acid medium. In fact, this reaction is approxi- 
mately two orders of magnitude slower in concentrated 
&PO1 than in aqueous solutions of strong acids, such 
as trifluoromethanesulfonic acid (1,2). 

Previous studies on the reduction of oxygen on plat- 
inum in concentrated &POr focused on examining 
the Tafel behavior over a wide temperature range 
(3-5). The conclusions can be summarized as follows. 
(i) Three Tafel regions can be observed. Above 0.8V 
(US. RHE), a 60 mV Tafel slope is obtained. This slope 
changes to 120 mV in the region of potentials be- 
tween 0.8 and 0.6V. Below 0.5V, very high Tafel slopes 
(over 200 mV1- are observed. The mechanism of the 
reaction in the third region is not completely under- 
stood. (ii) Tafel slopes in the intermediate range (120 
mV) are independent of temperature, contrary to 
predictions from electrode kinetic theory. Appleby (5) 
suggested that this phenomenon could be associated 
with a change in the double layer rstructure with tem- 

Electrochemical Society Student Memlnr. 
** Electrochemical Society Actlve Membttr. 
=Leave of absence from LANL; at lnstltute for Hydrogen Syr- 

tems, Mhissauga, Ontario L5N 1P1, Canada 
Key words: gas, electrode, metals, electrolyte. 

perature. But the question is far from settled. Yeager 
et a!. (6) suggested that this phenomenon is due to a 
compensating effect of the entropic and enthalpic 
terms in the rate expression. (iii) Rotating ring-disk 
investigations (7, 8) have shown that the reduction of 
oxygen in concentrated phosphoric acid follows two 
parallel paths: a direct four-electron reduction to 
water and a coupl? of two-electron transfer reduction 
reactions to water with hydrogen peroxide as the in- 
termediate. (iv) The rate of the reaction is first order 
with respect to the oxygen partial pressure (4). ( v )  
The reaction order with respect to proton activity is 
3/2 in the low current density region (60 mV Tafel 
slope) and 1 in the high current density region (120 
mV Tafel slope). 

The structure and properties of concentrated &PO4 
are not well understood, but these certainly are ex- 
pected to play a role in the slow reduction of oxygen 
at platinum. Recently, the authors examined the struc- 
ture of the mercury/concentrated &PO4 interface (9) 
and concluded that the double layer in concentrated 
&Po4 is thicker than in aqueous media. Thus, it seems 
reasonable to assume that a transition with respect to 
both the interfacial and bulk properties will occur 
when passing over from a water to a phosphoric acid 
solvent structure. For this reason, the present study 
was undertaken to elucidate the effect of the strut- 

*Report copied from Electrochemical .  Sc ience  and Technology, J. El.ectrochemica1 Soc. ,  A p r i l  1984. 



ture of H a m 4  solutions, ranging in concentration from 
7 to B5%, on the kinetics of oxygen reduction at phti- 
num electrodes. 

Experimental 
The equipment, preparation of the electrode, and the 

experimental procedure for the rotating ring-disk 
experiment have already been described (10). The 
same setup was used for the cyclic voltammetric ex- 
periments. Phosphoric acid (85%, electronic grade, 
3. T. Baker) was treated with 10% hydrogen peroxide 
(901, stabilizer free, FMC) and heated to 600-70°C 
for lh. The solution was concentrated to 85% by 
evaporation at 160eC in Teflon vessels. This solution 
was diluted with double-distilled water that was pre- 
viously treated with alkaline prmanganate. Further 
evaporation of the 85% stock solution was done to ob- 
tain the 95% concentration. Before use, solutions were 
pre-electrolyzed for 24h with platinum electrodes to 
eliminate electroactive impurities. 
All potentials were measured against a dynamic 

hydrogen electrode (DHE) . The values were converted 
to a reversible hydrogen electrode (RHE) scale by 
measuring, for each solution, the potential difference 
between the DHE and a floating-type fuel cell hydro- 
gen electrode. 

Results and Discussion 
Cyclic voltammetry.-Figure 1 shows the cyclic vol- 

tammograms on Pt, obtained as a function of HsPO4 
concentration. No difference was observed for a sta- 
tionary or a rotating electrode, which is indicative of 
the absence of impurities in the electrolyte. According 
to this figure, it is apparent that for concentrations 
of &PO4 up to about 4M there is no effect on the char- 
acteristics of the voltammogram. On the other hand, 
for higher concentrations, it is observed that the po- 
tential of oxide formation commencement progres- 
sively shifts to more positive values. Also, the total 
charges for oxide formation and reduction decrease for 
these increasing acid concentrations. These findings 
can be associated with a strong adsorption of phos- 
phate species on the electrode that interferes with the 
oxide formation. However, the effect may be partly due 
to a decrease in the activity of water as the concentra- 
tion of &PO4 increases (11). 

Mass-transfer-corrected Tafel beh3vior.-The mass- 
transfer-corrected Tafel behavior for oxygen reduction 
on platinum for different &PO4 concentrations is 
shown in Fig. 2. The plots correspond to the equation 

2.3RT 2.3RT idl id 
E = -  log i, - - log - 

oeF acF (dl - ld 
111 

.. where ae is the transfer coeftlcient, t, the exchange 
current density, id the disk current density, and the 
limiting disk current density. The Tafel plots pre- 
sented in Fig. 2 are independent of rotation speed. In 
the region from 0.6 to 0.8V, Tafel slopes are about 120 
mV. This result is similar to that obtained by others 
(3-7, 11) in acid media. Thus, it seems reasonable to 
conclude that the overall reduction of oxygen is con- 
trolled by the Arst charge transfer step under Lang- 
muir adsorption conditions. Below 0.5V. higher Tafel 
dopes (> 200 mV/decade) are observed and the cur- 
rent seems to reach a limiting value. Because these 
limiting currents are not due to mass transfer, a 
change in the reaction mechanism must be taking 
place. This change probably involves a chemical rate- 
determining step, which may be the dissociative ad- 
sorption of the oxygen molecule. This point was not 
investigated further because the potential region lies 
outside the range of interest for fuel ceb.  

Mechanistic aspects of etectroreduction of ozygen.- 
Recently, theoretical aspects of the reduction of oxy- 
gen on rotating ring-disk platinum electrodes have 
been considered (10). In this work, it was concluded 

that the mechanism proposed by Darnjanovie et al. 
(12) is the most appropriate. The reaction scheme is 
as follows 

where a indicates an adsorbed state and b is the bulk 
of the solution. Two equations for calculating the re- 
action rate constants klJ kz, and ks are (10) 

where Id and I, are the disk and ring currents, respec- 
tively; Idl is the limiting current on the disk electrode; 
N is the collection efficiency; o is the rotational speed; 
v is the kinematic viscosity of the electrolyte; and Dq 
and DH* are the diffusion coefficients of oxygen and 
hydrogen peroxide, respectively. Accordingly, plots of 
Idl/(Id - Id) US. w-112 and Id/I, vs. W-112 should yield 
two straight lines, and the rate constants can be cal- 
culated from the intercepts and the slopes of these 
straight lines. In this way, the values of kl, kz, and ks, 
as functions of electrode potential for oxygen reduc- 
tion on Pt, were evaluated from the ring-disk data for 
various phosphoric acid concentrations (Fig. 3-6). 

In all cases, it was found that the ratio k l /h  is 
greater than 10, which means that most of the oxygen 
reduces to water directly through the four-electron 
transfer reaction. Because kl >> k2, the relationship 
between i and kl can be written approximately as 

i ES 4FA klcm = 4FA kl' c o f i ~ +  exp - - ( ,g ) lS1 
Therefore, kl should have the same dependence on 
phosphoric acid concentration as i/co, at any potential. 
This can be seen in Fig. 7 where kl, i, and i/c@ for a 
potential of 0.7V are plotted as a function of &PO4 
concentration. Clearly, kl and i/cQ have the same con- 
centration dependence. 

From Fig. 3, 4, and 5, it is apparent that for W O 4  
concentrations up to 8 ~ ,  k2 h& the same potential 
de~endence as kl. This means that the rate-detennin~ 
ing step is probably the same for both reactions. At 
higher concentrations, kt is surprisingly independent 
of potential, which means that the rate of the reaction 
is chemically controlled (chemical step prior to elec- 
tron transfer step). In this case, the rate of the reac- 
tion may be determined by the adsorption of the O2 
molecule, which must be oriented preferentially at the 
interface in order to lead to H202 formation. This 
can be inhibited by a predominance of phosphate spe- 
cies at the interface, which is supported by the fact 
that the constant value of k2 shows a marked decrease 
with the increase in HsP04 concentration. 

The behavior of ks is similar to that of k2 (cf. Fig. 
5 and 6) ; ks increases with the overpotential in the low 
overpotential regime and is more or less independent 
of potential when E becomes more negative than 0.5V 
vs. RHE. Increased phosphoric acid concentration re- 
sults in decreased ks. It can be shown that the signifl- 
cant decrease in k2 and ks with increasing -4 Con- 
centration leads to an increase in the faradaic e s -  
ciency for the reduction of oxygen to water. This in  
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Fig. 1. Cyclic voltammograms on Pt a t  o scan rate of 50 mV/s in H3P04 over the concentrotion range 6.6-95 w/o (weight percent) 

a t  25%. 

Fig. 2. Mass-transfer-corrected 
Tafel behavior for oxygen redue- 
tion on Pt in H3P04 over the con- 
centration range 6.6-95 w/o a t  
25°C. Tafel behavior is indr- 
pendent of electrode rotating 
speed in the 400-3600 rpm n- 
gion. 
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important because it means that at the high concen- (14) has indicated that both oxygen solubility and 
trations used in fuel cells the amount of formation of proton activity decrease with increasing &PO4 con- 
Hz02 k negligible and the faradaic efficiency k close centration; one would, therefore, expect a lower oxy- 
to unity. gen reduction current in concentrated &PO4 solutions. 

Effect of anion adsorption on the rate of owgen re- However, the most significant factor in determining 
duction.-The decrease in the oxy4;en reduction rate the rate of oxygen reduction may be due to the change 
with increasing &po4 can be attributed in the double layer structure at the electrode/electro- 
to several factors. These include the oxygen solubility, lyte interface with &Po4 concentration. A recent 
proton activity, and changes in douk)le layer structure. study (9) has shown that the double layer thickness is 
In the region of potential considereti, the rate of 0 ~ -  greater at a mercury electrode/concentrated GPO4 in- 
gen reduction in acid media as show11 by Eq. [3] is first terface than at a mercury electrode/aqueous electrolyte 
order with respect to the oxygen concentration and interface. Thus, the distance for electron tunneling can 
the proton activity (4, 13). Experimental evidence be expected to be greater at the electrode/phosphoric 
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tive sites for the charge-transfer reaction and causes a 
decrease in the oxygen reduction current. 

The plots of i/c@ us. &PO4 concentration (Fig. 7) 
indicate that the rate of the reaction has a minimum at 
a certain &PO4 concentration. This behavior has 
sometimes been observed for electrode reactions in 
mixed solvents (16). The phenomenon can be attrib- 
uted to differential solvation between the electrode 

g and the reacting species. Thus, if the latter is preferen- 
;;1 tially solvated with water molecules while the elec- 

trode is covered by phosphate species, a lower rate of 
reaction should then be expected. On the other hand, lo* if the electrode and the reactant share the same sol- 
vating species, as would be the case in dilute or very . concentrated phosphoric acid electrolytes, then the 

x activated complex may be nearer the electrode surface . and higher rates should be expected. 

Conclusions 
The results of the cyclic voltammetric and rotating 

ring-disk electrode experiments make it possible to 
reach the following conclusions on the effects of phos- 
phoric acid concentration on oxide formation and 

.5 1 5 10 oxygen reduction kinetics at platinum. 
H3PO4 CONCENTRATION, M 1. At concentrations below 4M, phosphoric acid has 

hardly any effect on the cyclic voltarnmograms. Above 
Fig. 7. Dependences of i, i/cm and k l  for oxygen reduction a t  4M, there is a progressive shift of the potential for 

P t  on concentration a t  25'C. commencement of oxide formation in the positive 
direction. Strong anion adsorption is indicated. 

provide further evidence of strong anion adsorption, 2. In the potential range 0.8-0.6V, the slope of the 
a separate experiment using a streaming electrode mass-transfer-corrected Tafel plots is nearly equal to 
technique (15) was made to determine the effect of 120 mV/decade and is practically independent of con- 
phosphoric acid concentration on the potential of zero centration. Below 0.6V, the slope becomes quite high 
charge on a mercury electrode. Figure 8 shows the plot (- 200 mV/decade), and then the current densities 
of the potential of zero charge ( E , )  as a function of tend to a limiting value, which decreases with increas- 
&POa concentration. A large change of Ez toward ing acid concentration. 
more negative values was observed as the concentra- 3. The mechanism proposed by Damjanovic et al., 
tion of &Po4 increased, which is evidence for increas- that is, the four-electron transfer reduction in which 
ing adsorption of phosphate species at  the interface. the first electron transfer step is rate determining, ap- 
The change of E,  with &PO4 concentration is linear, pears most appr~priate a t  potentials above 0.6V. The 
which means that the properties of the double layer limiting current densities are probably due to a rate- 
undergo a gradual change. It can be expected that the determining dissociative adsorption of oxygen. 
extent of adsorption of the phosphate ion on platinum 4. The rate constants for the two (k2)- and four (kl)- 
is at least as much as that on mercury. The presence of electron transfer reduction reactions have the same 
phosphate ions on the electrode surface blocks the ac- potential dependence. The ratio kl /kz  is greater than 
W 
I a 

Fig. 8. Dependence of the po- 
tential of zero charge on mercury 
an HaPOI concentration a t  2S°C. 
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10, which again supports the second conclusion. At 
concentrations above 8M, k2 is independent of poten- 
tial, probably because of the need for a preferential 
orientation of oxygen leading tu the formation of HzOZ. 

5. The decrease in reaction rates at  higher concen- 
trations can be attributed to four causes: lower oxygen 
solubility, lower proton activity, increased specific ad- 
sorption of anions, and a thicker double layer. Com- 
plementary experiments that yielded the concentration 
dependence of the potential of zero charge on mercury 
support the view that specific adsorption of anions is 
quite strong. 

6. Minima in the plots of i/co2 and of kl vs. concen- 
tration a t  a fixed potential illustrate the effects of 
differential solvation between electrode and reaction 
species on oxygen reduction kinetics. Similar phenom- 
ena have been observed for other reactions in mixed 
solvents. 
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ABSTRACT 

The k i n e t i c s  of oxygen r educ t ion  a t  Pt i n  tri- 
f luoronetha~nesul f  on ic  a c i d  (TFMSA) (0- 05 - 6. OM) 
and i n  1 , C M  TmSA w i t h  a d d i t i o n  of sma l l  concen- 
t r a t i o n s  of phosphoric  a c i d  (0.003 - 0.l.M) was in-  
v e s t i g a t e d  us ing  t h e  r o t a t i n g  r ing-d isc  e l e c t r o d e  
technique .  I n  TFMSA, t h e  oxygen r educ t ion  c u r r e n t  
o n  t h e  oxide-covered Pt was found t o  be s m a l l e r  
t h a n  t h a t  on  t h e  oxide-free Pt su r f ace .  T h i s  re- 
s u l t  i s  c o n s i s t e n t  w i t h  t h e  g r e a t e r  amount o f  
hydrogen peroxide  produced on  t h e  oxide-covered 
P t .  A r e a c t i o n  o r d e r  of one-half w i t h  r e s p e c t  to 
t h e  oxygen c o n c e n t r a t i o n  f  o'r t h e  oxygen r educ t ion  
r e a c t i o n  was obta ined  from t h e  r i n g - d i s c  d a t a .  Ad- 
d i t i o n  of i n c r e a s i n g  amounts of phosphoric  a c i d  t o  
TFMSA r e s u l t e d  i n  a  p rog res s ive  dec rease  i n  t h e  
oxygen r educ t ion  c u r r e n t  and i n  a n  i n c r e a s e  of t h e  
r e a c t i o n  o r d e r  w i t h  r e s p e c t  t o  oxygen. On t h e  
b a s i s  of t h e s e  e x p e r i n e n t a l  r e s u l t s  t h e  r e a c t i o n  
nechanisrr! proposed f o r  t h e  oxygen r educ t ion  on Pt 
i n  TFMSA i s  t h e  f a s t  d i s s o c i a t i v e  a d s o r p t i o n  of 
oxfgen, fo.liowed by t h e  f i r s t  slow e l e c t r o n  
t r a n s f e r  s t e p .  

IKTRODUCTIO N 

Trifluoronethanesulfonic a c i d  (CF3S03H, TFXSA) and i t s  homo- 
fogues  of h i g h e r  o o l e c u l a r  weight a r e  cons idered  a l t e r n a t i v e s  t o  
phosphor ic  a c i d  a s  ,acid e l e c t r o l y t e s  f o r  f u e l  c e l l s .  The r e a c t i o n  
r a t e  of oxygen reductrion a t  Pt i n  TMSA i s  about  two o r d e r s  of magni- 
tvde. h i g h e r  t han  that: i n  phosphoric  a c i d . ( l )  This  f a s t  r e a c t i o n  r a t e  
o f  oxygen r educ t ion  i n  TFL4SA has been a t t r i b u t e d  t o  t h e  h igh  oxygen 



s o l u b i l i t y  ancl weak a d s o r p t i o n  of  an ions  from TFMSA on t h e  exec- 
t rode. ( 2 )  Two T a f e l  r eg ions  f o r  oxygen r educ t ion  a t  Pt i n  TMSA were 
observed(2) ,  i , e . ,  60 mV/decade a t  low o v e r p o t e n t i a l s  and 120  m ~ /  dec- 
ade  a t  h i g h  o v e r p o t e n t i a l s .  Although t h e r e  have been some i n v e s t  i- 
g a t i o n s  of  oxygen r educ t ion  o n  plat inum i n  aqueous TFMsA and i n  TFMSA 
monohydrate on  smooth and porous e l e c t r o d e s ( l ) ,  i t s  k i n e t i c s  i n  t h i s  
e l e c t r o l y t e  i s  not  y e t  fu l ly .unde r s tood .  

The purpose of t h i s  s tudy  i s  t o  i n v e s t i g a t e  t h e  k i n e t i c s  of oxygen 
r e d u c t i o n  a t  smooth Pt i n  aqueous TFMSA ( 0 . 0 5 - a )  and i n  a  mixed a c i d  
c o n t a i n i n g  I . ( M  TMSA and 0.003 - 0.1M phosphoric  a c i d  a t  room temper- 
a t u r e .  R o t a t i n g  r ing-disc e l e c t r o d e  and c y c l i c  voltammetric tech-  
n iques  were used. From t h e  c a l c u l a t e d  r e a c t i o n  o r d e r s  w i t h  r e s p e c t  
t o  oxygen and mass t r a n s f e r  c o r r e c t e d  T a f e l  p l o t s ,  a  r e a c t i o n  mecha- 
nism i s  proposed f o r  t h e  oxygen r educ t ion  on Pt i n  TFMSA. 

11. EXPERMENTAL 

The e l ec t rochemica l  c e l l  i nco rpora t ed  t h e  plat inum r ing-d isc  e l e c -  
t r o d e s  (P ine  Instrument  DT 6 #1004), a l a r g e  3 la t inum gauze c o u n t e r  
e l e c t r o d e  and a  dynamic hydrogen as t h e  r e f e rence  e l e c t r o d e  (Dm). 
The p o t e n t i a l  o f  t h e  r i n g  and d i s c  e l e c t r o d e s  vs  t h e  DHE e l e c t r o d e  
was conver ted  t o  t h e  r e v e r s i b l e  hydrogen (RIIE) s c a l e  by u s e  of t h e  
measured p o t e n t i a l  o f  t h e  DHE v s  a f l o a t i n g  type  P t  f u e l  c e l l  e l e c -  
t r o d e  which was s a t u r a t e d  w i t h  hydrogen. The e l e c t r o l y t e s  used were 
0.05 - 6M TF'MSA, and 1,CM TFMSA con ta in ing  , smal l  c o n c e n t r a t i o n s  
(0.003 - 0.1M) of phosphoric ac id .  T r i f  luoromethanesulfonic  ac id  (3M 
Co.), w a s  d i s t i l l e d  tw ice  under  vacuum (B.P. < 40°C). The d i s t i l -  
l a t e  was added t o  double d i s t i l l e d  wa te r  t o  form TFMSA monohydrate 
which w a s  t hen  v a c u u n - d i s t i l l e d  (B.P. < 80°C). The monohydrate was 
s t o r e d  i n  . the c r y s t a l l i z e d  form. Before use ,  t h e  monohydrate was 
d i l u t e d  w i t h  double d i s t i l l e d  wa te r  t o  t h e  d e s i r e d  concen t r a t ion  and 
was p r e e l e c t r o l y z e d  f o r  24 hours.  Phosphoric ac id  (J. T. Baker, e l e c -  
t r o n i c  g rade )  was t r e a t e d  w i t h  10% hydrogen peroxide  (90% s t a b i l i z e r  
f r e e ,  FMS) and heated t o  50 - 100°C f o r  one hour t o  remove excess  pe r -  
oxide. Before use ,  t h e  a c i d  was a n o d i c a l l y  pre-e lec t ro lyzed  f o r  2 4  
h o u r s  u s ing  a p la t incm gauze e l e c t r o d e  t o  e l i m i n a t e  e l e c t r o a c t i v e  i m -  
p u r i t i e s .  

The r ing -d i sc  e l e c t r o d e  was pol i shed  us ing  25-y and 5-p p o l i s h i n g  
powder, fol lowed by 1-y and 0.25-p diamond p a s t e  (Buehler  LTD). A f t e r  
p o l i s h i n g ,  t h e  e l e c t r o d e  was degreased w i t h  ace tone ,  washed w i t h  
d i s t i l l e d  wa te r ,  and t h e n  t r a n s f e r r e d  i n t o  t h e  c e l l .  The p o t e n t i a l s  
of t h e  d i s c  and r i n g  e l e c t r o d e s  were c o n t r o l l e d  by a  p o t e n t i o s t a t  
( P i n e  Ins t rument ,  RDE 3) .  The r o t a t i o n  speed of t h e  e l e c t r o d e  was 
c o n t r o l 1  ed by a  h igh  speed r o t a t o r  (P ine  Ins t runen t  , ASR 2 ) .  

Be fo re  t h e  e l e c t r o d e  k i n e t i c  experiments ,  t h e  s o l u t i o n  was de- 
a e r a t e d  w i t h  p u r i f i e d  n i t r o g e n  gas  and a c y c l i c  voltamnogram on t h e  
p l a t inum d i s c  e l e c t r o d e  was recorded a t  a  scan  r a t e  of 50 nV/s. 



Oxygen (I atm) was t h e n  bubbIed through t h e  e i e c t r o l y t e  f o r  ha l f  a n  
hour. During t h e  r o t a t i n g  r i n g - d i s c  e l e c t r o d e  experiments ,  t h e  po- 
t e n t i a l  o f  t h e  r i n g  e l e c t r o d e  was maintained a t  l- 1 V v s  DHE f o r  t h e  
o x i d a t i o n  o f  hydrogen peroxide  (which was formed a t  t h e  d i s c  e l e c t r o d e  
and d i f f u s e d  t o  t h e  r i n g  e l e c t r o d e )  t o  oxygen a t  t h e  l i m i t i n g  c u r r e n t  
d e n s i t y .  The p o t e n t i a l  o f  d i s c  e l e c t r o d e  was scanned from 1 . 0  - 0.3 V 
v s  DHE and i n  t h e  r e v e r s e  d i r e c t i o n  between t h e s e  p o t e n t i a l s  a t  a s c a n  
r a t e  5 mV/s .  The r i n g  and d i s c  c u r r e n t s  were recorded on  a  d u a l  pen  
X-Y-Y' r e c o r d e r  ( S o l t e c  6431). All t h e  experiments  were c a r r i e d  out  
a t  a  tempera ture  of 25°C. 

111. RESULTS AND DISCUSSICN 

E f f e c t s  of t h e  Surf a c e  Oxide a t  Pt on t h e  K i n e t i c s  of Oxygen Reduct ion 
i n  TMSA 

The c y c l i c  vo1l:ammograms on Pt  i n  d i f f e r e n t  TFMSA c o n c e n t r a t i o n s  
a r e  p re sen ted  i n  Fig. I, There was a  s i g n i f i c a n t  change i n  t h e  po- 
s i t i o n  and shape of t h e  peaks corresponding t o  t h e  fo rma t ion / r educ t ion  
o f  ox ide ,  and t h e  adso rp t ion /deso rp t ion  of hydrogen a s  t h e  TFMSA con- 
c e n t r a t i o n  was var:Led from 0.05 t o  6. CM. The observed c o n c e n t r a t i o n  
dependence of t h e  c y c l i c  voltamnograms i n d i c a t e s  t h a t  e i t h e r  t h e  w a t e r  
a c t i v i t y  decreased  o r  t h e  a d s o r p t i o n  of an ions  inc reased  wi th  i n c r e a s e  
o f  TFMSA concen t r a t ion .  The oxide  on t h e  P t  s u r f a c e  formed a t  a po- 
t e n t i a l  c l o s e  t o  2 , ,0  V v s  R E  was completely reduced a t  0.3 V vs XHE. 
When t h e  e l e c t r o d e  p o t e n t i a l  was scanned from 1 . 0  t o  0.3 V vs RHE i n  
t h e  r o t a t i n g  r ing-d isc  e l e c t r o d e  experiments ,  t h e  e l e c t r o d e  s u r f a c e  
w a s  f i r s t  covered w i t h  a l a y e r  of oxide and then  g r a d u a l l y  reduced t o  
b a r e  Pt a t  t h e  end of  t h e  scan.  Conversely when t h e  e l e c t r o d e  po- 
t e n t i a l  w a s  scanned from 0.3 t o  1 . 0  V v s  RHE, t h e  e l e c t r o d e  s t a r t e d  
w i t h  a n  oxide- f ree  s u r f a c e  and then  t h e  oxide  g r a d u a l l y  formed a t  po- 
t e n t i a l s  above 0.8 V v s  RHE. 

The i n f l u e n c e  of t h e  s u r f a c e  oxide on t h e  k i n e t i c s  of oxygen re -  
d u c t i o n  a t  Pt  i n  0.0% 'IRiSA i s  shown i n  F ig .  2 ( a t  W " 900 rpm). The 
d i s c  c u r r e n t  (Id) f o r  oxygen r educ t ion  on the oxide-free s u r f a c e  (po- 
t e n t i a l  scanned from 0.3 t o  l . C  V v s  RHE) was Elgher  a t  a l l  p o t e n t i a l s  
t h a n  t h a t  on t h e  oxide-covered s u r f a c e  ( p o t e n t i a l  scanned from 1 . 0  t o  
0.3 V v s  BE). The naxinun anount of hydrogen peroxide  d e t e c t e d  o n  
t h e  r i n g  e l e c t r o d e  (I,) f o r  t h e  oxide-covered d i s c  e l e c t r o d e  was 400% 
h i g h e r  t h a n  t h a t  f o r  t h e  oxide-free d i s c  e l e c t r o d e .  

I n  t h e  sane  p o t e n t i a l  r eg ion  (0 .3  - 1 .0  V vs  RHE), t h e  amount o f  
s u r f a c e  oxide  on Pt i n  6.m TP-SX was l e s s  t han  t h a t  i n  0.0Sf TnfSA 
(Fig.  1 Accordingly, t h e  i n f l u e n c e  of d i r e c t i o n  of t h e  s c a n  of t h e  
e l e c t r o d e  po ten t i a l .  on  t h e  k i n e t i c s  of oxygen r educ t ion  i n  6. (34 T M S A  
should have been l e s s  t h a n  t h a t  i n  0.0% T R S A .  This  can  be observed 
by comparing t h e  r i n g  c u r r e n t s  a s  a  f u n c t i o n  of d i s c  p o t e n t i a l  i n  
0.05M TFMSA (F ig .  2) and i n  6 . 0 :  TFXSA ( F i g .  3 ) .  The  d i f f e r e n c e  i n  
t h e  maximum r i n g  c u r r e n t  between t h e  forward (1.0 - 0.3 V vs  RHE) and 
t h e  backward ( 0 . 3  -- 1 .0  V v s  R E )  scan i n  6 . 0 :  TFXSA was 3 4 ,  whereas 



t h e  d i f f e r e n c e  i n  0.0% TFMSA was 400%. A 1 1  t h e  d a t a  repor ted  i n  t h e  
next  s e c t i o n  were obta ined  w i t h  t h e  scan  of  t h e  d i s c  e l e c t r o d e  po- 
t e n t i a l  from 1.0 t o  0.3 V vs R E .  

R e a c t i o n  Order  w i t h  Respect  t o  Oxygen f o r  t h e  Oxygen Reduct ion 
Reac t ion  a t  Pt i n  TFMSA 

An a t t empt  was made t o  determine t h e  r a t e  c o n s t a n t s  f o r  oxygen re- 
d u c t i o n  a t  P t  i n  T M S A  w i t h  a  r e a c t i o n  scheme proposed i n  p rev ious  
p u b l i c a t i o n s  : 6-8 

Mathematical  exp res s ions  have been de r ived  f o r  t h e  c a s e  when t h e  
i n t e r m e d i a t e  s t e p s  are f i r s t  o r d e r  with r e s p e c t  t o  t h e  s u r f a c e  con- 
c e n t r a t i o n  of  oxygen and hydrogen peroxide. Two important  equa t ions ,  
which are used f o r  t h e  c a l c u l a t i o n  of r a t e  c o n s t a n t s ,  k l ,  k2, and k3 ,  
are : 

and 

These e q u a t i o n s  have been used t o  c a l c u l a t e  t h e  r a t e  c o n s t a n t s  f o r  t h e  
oxygen r educ t ion  r e a c t i o n  i n  s e v e r a l  aqueous e l e c t r o l y t e s ,  i n c l u d i n g  
H3PO4, X2S04, HC104, and K O H . ~  However i n  t h e  p re sen t  s tudy ,  d i f f i -  
c u l t i e s  were encountered i n  u s ing  Eqs. (1) and ( 2 )  t o  i n t e r p r e t  t h e  
r o t a t i n g  r ing -d i sc  d a t a  f o r  oxygen r educ t ion  i n  TFMSA s o l u t i o n s  
Negat ive i n t e r c e p t s  were observed f o r  both t h e  I d ~ / ( I d x - I d )  V s  W- 112 
and I ~ / I ~  v s  (1:-1/2 p l o t s  i n  a l l  TR?SA s o l u t i o n s  (0.05-6.~k?) a s  w e l l  a s  
i n  1.m TMSA s o l u t i o n  w i t h  phosphoric  a c i d  a d d i t i v i e s  (0.003 - O.UI). 

The i n d i c a t i o n s  a r e  t h a t  t h e  above r e a c t i o n  scheme does no t  a p p l y  
f o r  oxygen r educ t ion  a t  Pt i n  TF'MSA s o l u t i o n s  and i n  t h e  mixtures  of 
TFMSA/HpO4. One p o s s i b l e  exp lana t ion  i s  t h a t  t h e  r e a c t i o n  o r d e r  w i t h  
r-espect .& oxygen i n  the  T-FMSA medium is not  unity.. An equa t ion  which. 



c a n  be u t i l i z e d  f o r  t h e  de t e rmina t ion  of r e a c t i o n  o r d e r  w i t h  r e s p e c t  
t o  oxygen, m y  

According t o  t h i s  equa t ion ,  a  p l o t  of  l o g  Id v s  l o g  ( I  - Id/%&), 
Eq. ( 3 )  should be :Linear w i t h  a  s l o p e  equa l  t o  m. The a p p l i c a b i l i t y  
of t h i s  e q u a t i o n  was t e s t e d  w i t h  t h e  exper imenta l  d a t a  f o r  oxygen re- 
d u c t i o n  at Pt i n  01.5 M s u l f u r i c  a c i d  and i s  demonstrated i n  Fig,  4. 
The r e a c t i o n  o r d e r  obta ined  from t h i s  p l o t  i s  1 + 0.2 which i s  con- 
s i s t e n t  w i t h  t h e  p rev ious  obse rva t ions .  ( 3 )  The r e a c t i o n  o r d e r s  w i t h  
r e s p e c t  t o  oxygen i n  TFMSA and i n  mixtures  of  TFMsA/H~PO~ were calcu-  
l a t e d  from s i m i l a r  p l o t s  u s ing  t h e  p r e s e n t  exper imenta l  r e s u l t s -  A 
t y p i c a l  p l o t  of  l o g  h v s  l o g  ( 1  - Id /h l l )  i n  0 . 0 3  TFMSA, p re sen ted  
i n  Fig.  5, r e v e a l s  a f r a c t i o n a l  r e a c t i o n  order .  The c a l c u l a t e d  re- 
a c t i o n  o r d e r s  i n  TFMSA s o l u t i o n s  and i n  mix tu re s  of TFMSA/H$'04 i n  t h e  
p o t e n t i a l  r e g i o n  f  xom 0.6 - 0.4 V vs  REfE a r e  l i s t e d  i n  Table 1. I n  
t h e  c o n c e n t r a t i o n s  of TFMSA i n v e s t i g a t e d ,  t h e  r e a c t i o n  o r d e r s  of oxy- 
g e n  were -between 0.4 and 0.5. I n  t h e  mixtures  of 1 . 0  M TFMSA and 
0.003 - 0.1M phosptloric a c i d ,  t h e  r e a c t i o n  o r d e r  of oxygen i n c r e a s e d  
from one h a l f  a s  t h e  c o n c e n t r a t i o n  of phosphoric  a c i d  was i n c r e a s e d .  
The r e a c t i o n  o r d e r  i s  equa l  t o  one i n  pure  phosphoric  a c i d  s o l u t i o n ,  

Mass T r a n s f e r  Corrected T a f e l  Behavior 
The f r a c t i o n a l  r e a c t i o n  o r d e r  of oxygen, a s  de r ived ,  can  be  v e r i -  

f i e d  by u s e  of t h e  mass t r a n s f e r  c o r r e c t e d  T a f e l  equa t ion  

E r -  2.3RT 
l o g  1 ( 

'd!L )O 
2*3RT l o g  I. - a F =dk- I d  

* 

The p l o t  of E v s  l o g  Id [ I d k / ( I d E  - I d ) I n  should be independent of t h e  
r o t a t i n g  speed of e l e c t r o d e ,  w, i f  m i s  chosen proper ly .  T h i s  p l o t  i n  
O.OM TmSA i s  g i v e n  i n  Fig. 6 f o r  m = 1 and i n  F ig .  7 f o r  n = 1 / 2 .  
The p l o t  f o r  n = 1 was dependent on w whi le  t h a t  f o r  m = 1 / 2  was 
independent  o f  w. Thi s  behavior  was observed i n  a l l  o t h e r  TFMSA 
e l e c t r o l y t e s  and i n  mixtures  of T M S A  and Hy04. The r e a c t i o n  o r d e r  
of one h a l f  f o r  oxygen i n  TFHSA i s  d i f f e r e n t  from t h a t  i n  o t h e r  a c i d s ,  
such  a s  phosphoric  a c i d  and s u l f u r i c  a c i d .  A p o s s i b l e  e x p l a n a t i o n  
f o r  a  r e a c t i o n  o r d e r  of one ha l f  i s  d i scussed  i n  a  l a t e r  s e c t i o n .  



K i n e t i c s  of  Oxygen Reduction a t  Pt i n  TFMSA and i n  Mixtures  of 
TFMSA/H?P04. 

The p l o t s  of E v s  l o g  I ~ [ I ~ ~ / ( I ~ ~ I ~ ) ~ . ~  f o r  oxygen r educ t ion  a t  
P t  i n  TFMSA and i n  1 M TFMSA con ta in ing  t h r e e  concen t r a t ions  of phos- 
p h o r i c  a c i d  a r e  shown i n  F igs .  8 and 9 r e spec t ive ly .  A t  a g iven  p o l  
t e n t i a l ,  t h e  oxygen r educ t ion  c u r r e n t  decreased a s  t h e  concen t r a t ion  
of TFMSA o r  of phosphoric  a c i d  was increased .  The dec reases  i n  t h e  
oxygen r educ t ion  c u r r e n t  i n  concent ra ted  TFMSA might be due t o  a 
lower oxygen s o l u b i l i t y  and/or  h ighe r  an ion  adsorp t ion .  It h a s  been 
n o t i c e d  i n  a p rev ious  s tudy( lO)  t h a t  t h e  adso rp t ion  of phosphate i o n  
i s  s t r o n g e r  t h a n  t h a t  of  TMSA anion.  I n  TFMSA con ta in ing  phosphoric  
a c i d  a d d i t i v e s ,  t h e  phosphate i o n  t ends  t o  adsorb  on t h e  e l e c t r o d e  
s u r f a c e .  The dec rease  i n  t h e  oxygen r educ t ion  c u r r e n t  w i t h  t h e  ad-  
d i t i o n  of phosphoric  a c i d  was probably due t o  t h e  e l ec t rochemica l  
a c t i v e  sites being blocked by t h e  adso rp t ion  of phosphate i ons .  

P o s s i b l e  Mechanism of Oxygen Reduction a t  Pt i n  TFMSA 
The mechanism of oxygen r educ t ion  a t  Pt i n  aqueous a c i d  and a lka-  

l i n e  e l e c t r o l y t e s  has  been proposed by Damjanovic and ~ r u s i c ( l l )  and  
by h a n g ,  Sen, and ~ e a ~ e r . ( ~ )  The f i r s t  s t e p  i n  t h e  r e a c t i o n  i s  t h e  
a d s o r p t i o n  of oxygen on  t h e  e l e c t r o d e  s u r f a c e .  According t o  t h e  l a t -  
t e r  workers ,  br idged a d s o r p t i o n  of oxygen l e a d s  t o  t h e  f o u r  e l e c t r o n  
t r a n s f e r  r educ t ion  of oxygen wh i l e  end-on adso rp t ion  f a v o r s  t h e  pro-  
d u c t i o n  of hydrogen peroxide.  ( 6, The bridged a d s o r p t i o n  of oxygen 
c a n  occu r  v i a  p a t h  2 where t h e  adsorbed molecular  oxygen i s  d i s s o c i -  
a t e d  i n t o  atomic oxygen. T h i s  atomic oxygen then  t a k e s  p a r t  i n  t h e  
cha rge - t r ans fe r  and p r o t o n a t i o n  r e a c t i o n  t o  f o m  wa te r  as t h e  f i n a  1 
produc t  ( p a t h  3).  Bridged a d s o r p t i o n  of oxygen can  a l s o  l e a d  t o  
wa te r  o r  hydrogen peroxide  v i a  p a t h  4. End-on a d s o r p t i o n  of oxygen i s  
fo l lowed by cha rge - t r ans fe r  and p ro tona t ion  ( p a t h  6 ) ,  and hydrogen 
pe rox ide  i s  t h e  f i n a l  product .  By assuming t h a t  t h e  f i r s t  charge-  
t r a n s f e r  and p ro tona t ion  s t e p  i s  r a t e  determining,  t h e  T a f e l  s lope  i s  
60 mV/decade under  Tenkin adso rp t ion  c o n d i t i o n s  and i s  1 2 0  mV/decade 
f o r  Langmuir a d s o r p t i o n  cond i t i ons .  (I1 3 12) I n  t h e  re ferenced  p u b l i -  
c a t i o n s ,  t h e  d i s s o c i a t i o n  s t e p  ( p a t h  2) was not  considered and a re-  
a c t i o n  o r d e r  of u n i t y  w i t h  r e s p e c t  t o  oxygen was assumed. 

Based on t h e  proposed nechanism(6*11), t h e  r e a c t i o n  o r d e r  of one- 
h a l f  w i t h  r e s p e c t  t o  oxygen can  be expla ined  by cons ide r ing  a  f a s t  
d i s s o c i a t i o n  s t e p  (pa th  2 i n  F ig .  1 0 )  and t h a t  s t e p  3 i s  r a t e  de-  
te rmining .  It should a l s o  be assumed t h a t  t h e  a d s o r p t i o n  of oxygen 
i s  under  Langnuir c o n d i t i o n s  ( i n  t h e  e l e c t r o d e  p o t e n t i a l  r eg ion  0.6 
t o  0.4 V v s  R-HE). S ince  s t e p  3 i s  r a t e  de te rmining ,  t h e  r educ t ion  
c u r r e n t  I d  can be expressed a s  



Assuming t h a t  the  s t e p s  before  t h e  r a t e  determining s t e p  4 a r e  i n  
equ i l i b r ium,  

-+ 4- 

k2B = k2 foad I f .o r  s t e p  2, and 

3 

$[0~](1-0) = $@ f o r  s t e p  1 

Under Langnuir  a d s o r p t i o n  c o n d i t i o n s ,  

By u s e  of  e q u a t i o n s  ( 6 )  - (8) i n  eq. ( 5 ) ,  Id c a n  be expressed by:. 

where 

According t o  Eq. (9), t h e  oxygen r educ t ion  c u r r e n t ,  Id, i s  f i r s t  o r d e r  
w i t h  r e s p e c t  t o  [I?], and one-half o r d e r  f o r  I02 1. The T a f e l  s lope  i s  
1 2 0  mV/decade (assuming 8 = 1 /2 )  under  Langmuir a d s o r p t i o n  c o n d i t i o n s  . 

I V .  CONCLUSIONS 

The s u r f a c e  chemis t ry  of Pt e l e c t r o d e  h a s  been shown t o  be a n  i m -  
p o r t a n t  f a c t o r  i n  t h e  k i n e t i c s  of oxygen r educ t ion  i n  TF'MSA. A l ower  
oxygen r e d u c t i o n  c u r r e n t  and a l a r g e r  amount of hydrogen peroxide  were 
observed f o r  t h e  oxide-covered P t  s u r f a c e  (when t h e  e l e c t r o d e  po- 
t e n t i a l  i s  scanned from 1.0 t o  0.3 V vs  RHE) a s  compared t o  t h e  oxide- 
f r e e  s u r f z c e  (when t h e  e l e c t r o d e  p o t e n t i a l  i s  scanned from 0 .3  t o  1 . O V  
vs  R E ) .  The r o t a t i n g  r ing-d isc  e l e c t r o d e  a n a l y s i s  r e s u l t e d  i n  a  re- 
a c t i o n  o r d e r  of one-half w i t h  r e s p e c t  t o  t h e  oxygen concen t r a t ion .  
Add i t ion  of phosphoric  a c i d  t o  t h e  TmSA decreased  t h e  r a t e  of oxygen 
r educ t ion  and i nc reased  t h e  r e a c t i o n  o r d e r  w i t h  r e spec t  t o  oxygen. 
On t h e  b a s i s  of t h e  p r e s e n t  exper imenta l  r e s u l t s ,  a r e a c t i o n  mecha- 
nism i n v o l v i n g  t h e  f a s t  d i s s o c i a t i v e  a d s o r p t i o n  of oxygen fol lowed by  
t h e  f i r s t  s low e l e c t r o n  t r a n s E e r  s t e p  was proposed f o r  oxygen reduc- 
t i o n  a t  plat2num i n  TFiSiSA 
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r o t a t i o n  speed of e l e c t r o d e ,  s -1 



The reaction order of oxygen in oxygen reduction 
at Pt in the potential region from 0.6 to 0.4 V vs. RHE 

0.05 M TFMSA 
0.1 M TWSA 
1.0 M TF'MSA 
6.0 M TFMSA 

1.0 M TFMSA 
1.0 M TFMSA $0.003 M H3PO4 
1.0 M TFMSA 3. 0.1 M H3P04 
0.7 M H3PO4 

REACTION ORDER 
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f r o x  t k e  rotating r i n g - d i s c  e l e c t r o d e  experiments f o r  

oxyg3n reduction a t  Pt in 0.05 P4 TFMSA. 



The p l c t  of p o t e n t i z l  a g a i ~ s t  log I [I 
d dl'(~dl - Id)] 

f o r  Z X V ~ . P I Z  r =-- r e B x t i o r .  zt Pt ir- . I j .OS ?4 TFXSA f o r  d i f -  



The p l o t  o f  p o t e n t i a l  a g a i n s t  l o g  I ~ [ I ~ ~ / ( I ~ ~  - I~)] 1/2 

f o r  oxygen r e d u c t i o n  a t  P t  i n  0 . 0 5  14 TFMSA f o r  

different . Thi s  plot assurnes rn = 1/2. 





The p l o t  o f  p o t e n t i a l  a g a i n s t  l o g  I ~ [ I ~ ~ / ( I ~ ~  - I ~ ) ]  1/2 f o r  oxygen 

reduc t ion  a t  P t  i n  1 . 0  M TFMSA with t h e  a d d i t i v e s  of H PO 3 4' 
This  

p l o t  i s  independent of W over  t h e  range of (400-3600 rpm). 
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Fuel  c s l l  poy;;lr plants a r e  being developed f o r  power 

g e n e r a t i o n  and o n - s i t e  i n t e g r a t e d  energy systems and f o r  

t r a n s p o r t a t i o n  a p p l i c a t i o n s .  For t h e  f i r s t  two app l i ca -  

t i o n s ,  reforms5 ?v.sls frox n z t u r a l  g a s ,  naphtha,  o r  c o a l  

a r e  being cons idersd  x h i l e  f o r  t h e  t h i r d ,  methanol con- 

v e r t e d  t o  hydr3gez-i on board the  v e h i c l e  i s  t h e  most l i k e l y  

- -. 
cand ida te  f u e l .  ;:lth reformed f u e l s ,  i t  i s  only p o s s i b l e  

t o  use a c i d s ,  n o l t e n  ca rbona tes ,  o r  s o l i d  oxides as t h e  

e l e c t r o l y t e s  f o r  fuel c e l l s  and of these  only t h e  f i rs t  it 

s u i t a b l e  f o r  mobile power p l a n t s .  

The phosphoric a c i d  i 'uel  c e l l  system i s  i n  t h e  most 

advanced s t a t e  of' development. Though the  emphasis has  

been on s t a t i o n a r y  a p p l i c a t i o n s ,  i t  has p o t e n t i a l  f o r  

t r a n s p o r t a t i o n  a p p l i c a t i o n s  as we l l .  The oxygen overpoten- 

t i a l  of  n e a r l y  400 mV i s  the  main cause of e f f i c i e n c y  l o s s  

i n  t h i s  f u e l  c e l l  system. The i n t r o d u c t o r y  chap te r  i n  t h i s  

t h e s i s  b r i e f l y  r e - ~ i e w s  the  s t a t u s  of the  f u e l  c e l l  techno- 

logy  and an engineer ing  a n a l y s i s  ( h e a t ,  mass and energy 

balance of a  29-k:.: f u e l  c e l l  power p l a n t  f o r  e l e c t r i c  

v e h i c l e s ,  basee on data from the  United Technologies 

'Abstract of work sdmitted in partial fulf i lbwnt of the requirements 
for  the degree of Doctor of Philosophy, my 1982. 



C o r p o r a t i o n ) .  This  m z l y s i s ,  x a j e  by t h e  a u t h o r ,  showed 

t h a t  a 100  mV r e 5 u c t i o n  i n  oxygen o v e r p o t e n t i a l  w i l l  have 

a s i g n i f i c a n t  e f f e c t  i n  i np rov ing  t h e  e f f i c i e n c y  and de- 

c r e a s i n g  t h e  v;sight ,  volume alzd c o s t  of  t h e  poif!er p l a n t .  

The main o b j e c t i v e s  of t h i s  t h e s i s  a r e  t o  i n v e s t i g a t e  

t h e  e f f e c t s  o f  t h e  e l e c t r o l y t e  on oxygen r e d u c t i o n  k i n e t i c s  

a-t  p l a t i num w i t h  t h e  hope of m d e r s t a n d i n g  why t h e  e l e c t r o -  

c a t a l y s i s  i s  rjiorsc i n  phosphoric  a c i d  t h a n  i n  some o t h e r  

a c i d s  and a l s o  t o  i n v e s t i g a t e  model e l e c t r o l y t e s  ( e  .g .  , 

CF S O  H ,  H2S04, H C l O  and KOX) which w i l l  make i t  pos- 3 3 4 ' 
s i b l e  t o  f i n d  new e l e c t r o l y t e s  f o r  f u e l  c e l l s .  

R o t a t i n g  r i n g - d i s c  e l e c t r o d e  t e c h n i q u e s  were mainly 

used f o r  t h e  e l e c t r o d e  k i n e t i c  s t u d i e s .  C y c l i c  voltam- 

metry  w a s  employed t o  c h a r a c t e r i z e  t h e  s u r f a c e  o f  p l a t i n m -  

e l e c t r o d e s  i n  t h e  above mentioned e l e c t r o l y t e s  o v e r  t h e  

r e g i o n  of p o t e n t i a l  of  f u e l  c e l l  r e a c t i o n s ,  Czpac i tance  

t e c h n i q u e s  were used t o  e l u c i d a t e  t h e  double  l a y e r  

s t r u c t u r e  a t  t h e  e l ec t rode -phosphor i c  a c i d  i n t e r f a c e  and 

t o  de te rmine  t h e  a d s o r p t i o n  behav io r  of t h e  t r i f l u o r o -  

methane s u l f o n a t e  a n i o n s .  

The r e s u l t s  of t h e  t h e o r e t i c a l  and expe r imen ta l  

s t u d i e s  may be suamarized as f o l l o w s :  



(1) The theory  of -the r o t a t i n g  r ing-d i sc  e l e c t r o d e  

nethod w a s  modified so  a s  t o  c a l c u l a t e  s e v e r a l  of the  r a t e  

c o n s t a n t s  f o r  t h e  intermedia-te s t e p s  i n  oxygen reduc t ion .  

Appl i ca t ion  o f  the  theory  revea led  t h a t  the  r e a c t i o n  

scheme 

f i t s  t h e  experimental  r e s u l t s  b e t t e r  than  o t h e r  proposed 

r e a c t i o n  schemes which involve  adsorp t ion  o r  desorp t ion  

s t e p s  of hydrogen peroxide.  The p r e s e n t  theory involves  

t h e  development of an equat ion  f o r  Idl/(Idl - I d )  VS. &) -112 

(where Idl and Id a r e  t h e  d i s c  l i m i t i n g  and d i s c  c u r r e n t s  

and &j i s  t h e  r o t a t i o n a l  speed of t h e  e l e c t r o d e )  which 

combined with t h e  p rev ious ly  der ived  express ion  f o r  

(Ir i s  t h e  r i n g  c u r r e n t )  v s .  W makes it p o s s i b l e  

t o  c a l c u l a t e  t h e  r a t e  c o n s t a n t s  k ,  k2 and k 1. 
3 

( 2 )  The r a t e  of oxygen r e d u c t i o n  a t  plat inum i n  

t h e  i n v e s t i g a t e d  e l e c t r o l y t e s  ( a c i d s  a t  pH = 0 and a l k a l i  

a t  pH = 14) fo1lov:s the  o rde r  KOH H2S0&==. CF SO H 5 H PO 
3 3 3 4 

s HC104. This  o r d e r  o f  a c t i v i t i e s  i s  r e f l e c t e d  i n  t h e  

e f f e c t s  of t h e  e l e c t r o l y t e s ,  i n  r e s p e c t  t o  s p e c i f i c  adsorp- 

t i o n  o f  an ions ,  on t h e  platinum oxide formation r e a c t i o n .  



( 3 )  The double l a y e r  i s  t h i c k e r  a t  t h e  mercury- 

phosphoric a c i d  (95%) than a t  t h e  mercury-aqu.eou.s 

e l e c t r o l y t e  i n t e r f a c e .  'i'hare i s  s t r o n g  adsorp t ion  of  

H PO o r  phosphate s p e c i e s  on mercury from concen t ra ted  3 4 
phosphoric a c i d .  

( 4 )  The s o l v e n t  s t r u c t u r e  change ( f r o m  H 2 0  t o  H PO ) 3 4 
appears  t o  occur  a.t about  56% H PO (molar r a t i o  of H20 t o  

3 4 
H PO is & : I ) .  Th.e slow k i n e t i c s  of oxygen redu.c-tion 

3 4 
k i n e t i c s  a t  plat inum i n  concent ra ted  phosphoric a c i d  can 

be a t t r i b u t e d  t o  double l a y e r  e f f e c t s  ( t h i c k e r  double 

l a y e r  and s t r o n g  a.dsorption of phosphoric a c i d  o r  phosphate 

s p e c i e s ) ,  low oxygen s o l u b i l i t y ,  

(5 )  The s p e c i f i c  adsorp t ion  of t r i f luoromethane-  

s u l f o n a t e  anions  on mercury i s  r e l a t i v e l y  small and is 

lower a t  40' than  a t  2 5 ' ~ .  The low e l e c t r o s o r p t i o n  of t h e  

CF S O  H an ions  on e l e c t r a d e s  and t h e  oppos i t e  behavior  of 3 3 
H PO and H ~ P O ~  anions  p a r t i a l l y  account f o r  t h e  cons ide r -  3 & 
a b l y  be- t te r  oxygen r e d u c t i o n  k i n e t i c s  a t  plat inum i n  

C F  SO K than in H1P04, The r e a c t i o n  o r d e r  with r e s p e c t  t o  
3 3 4 

oxygen f o r  t h i s  r e a c t i o n  is  l e s s  than  one f o r  a l l  t h e  TFMSA 

c o n c e n t r a t i o n  stu-died (0.05 t o  6.0 M )  . 
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