36 research outputs found

    The Influence of Spin-Labeled Fluorene Compounds on the Assembly and Toxicity of the Aβ Peptide

    Get PDF
    The deposition and oligomerization of amyloid β (Aβ) peptide plays a key role in the pathogenesis of Alzheimer's disease (AD). Aβ peptide arises from cleavage of the membrane-associated domain of the amyloid precursor protein (APP) by β and γ secretases. Several lines of evidence point to the soluble Aβ oligomer (AβO) as the primary neurotoxic species in the etiology of AD. Recently, we have demonstrated that a class of fluorene molecules specifically disrupts the AβO species. Methodology/Principal Findings To achieve a better understanding of the mechanism of action of this disruptive ability, we extend the application of electron paramagnetic resonance (EPR) spectroscopy of site-directed spin labels in the Aβ peptide to investigate the binding and influence of fluorene compounds on AβO structure and dynamics. In addition, we have synthesized a spin-labeled fluorene (SLF) containing a pyrroline nitroxide group that provides both increased cell protection against AβO toxicity and a route to directly observe the binding of the fluorene to the AβO assembly. We also evaluate the ability of fluorenes to target multiple pathological processes involved in the neurodegenerative cascade, such as their ability to block AβO toxicity, scavenge free radicals and diminish the formation of intracellular AβO species. Conclusions Fluorene modified with pyrroline nitroxide may be especially useful in counteracting Aβ peptide toxicity, because they posses both antioxidant properties and the ability to disrupt AβO species

    New poly(ADP-Ribose) Polymerase-1 Inhibitors with Antioxidant Activity Based on 4-Carboxamidobenzimidazole-2-yl-pyrroline and -tetrahydropyridine Nitroxides and their Precursors

    No full text
    4-Carboxamidobenzimidazoles were previously described as PARP inhibitor compounds. Here we report upon 4-carboxamido-1H-benzimidazoles substituted in the 2-position with nitroxides or their amine or hydroxylamine precursors. Among the new molecules, a highly active PARP inhibitor 4h (IC50 = 14 nM) was identified with antioxidant/radical scavenger activity. We concluded that in most cases sterically-hindered amines are better PARP inhibitors than their oxidized form and structural changes in the 2-substituted-4-carboxamido-1H-benzimidazoles, (such as N-substitution, or changing the position of the carboxamide group) was detrimental to PARP inhibition activity, but not on antioxidant activity. These results indicate the advantages in combining of an antioxidant nitroxide or nitroxide precursor with a PARP inhibitor molecule to decrease or eliminate the deleterious processes initiated by reactive oxygen and reactive nitrogen species (ROS and RNS). The radical scavenging capability of 4h was demonstrated by EPR study of urine collected after drug administration

    The Structure and Internal Dynamics of R6-p-C6H4-R6 Biradical: EPR, X-ray Crystallography and DFT Calculations

    No full text
    A purposefully synthesized nitroxide biradical R6-p-C6H4-R6 (B1), where R6 is the 1-oxyl-2,2,6,6-tetramethyl-1,2,5,6-tetrahydropyridine group with a relatively short distance between the two radical sites, has been studied by X-band electron paramagnetic resonance (EPR) spectroscopy. Hyperfine splitting (hfs) constants on the 14N atoms, electron spin exchange integral |J|, and the distance between the two N–O fragments rNO–NO were experimentally measured. Density functional theory, DFT, calculations were performed using the ORCA 4.0.1.2 program package. The optimized geometry was compared with X-ray crystallographic data and theoretical hfs constants were compared with the respective experimental EPR values. It is concluded that the current quantum chemical approaches provide good results in calculating hfs constants as well as some other EPR parameters. It is confirmed that the intramolecular electron spin exchange in biradicals analogous to B1 is realized by the indirect mechanism rather than direct collision of the N–O· groups. It is also shown that one can calculate and predict values of |J| in other similar biradicals based on the principle of “attenuation coefficients. © 2018, Springer-Verlag GmbH Austria, part of Springer Nature
    corecore