1,135 research outputs found
Gojiberry Breeding: Current Status and Future Prospects
Goji, gojiberry, or wolfberry is the fruit of Lycium barbarum L., L. chinense Mill., or L. ruthenicum Murr. in the family Solanaceae Juss. The fruit is bright orange-red or black and is edible with a sweet and tangy flavor. Gojiberry is rich in polysaccharides, flavonoids, carotenoids, betaine, kukoamine A, sitosterol, and other compounds which have antioxidant, anti-inflammatory, and anti-neoplastic properties and have been used for the treatment of various blood circulation disorders and diabetes. Recently, there is an increased demand for high-quality gojiberry and its products because they are considered a superfruit. China is the main producer and supplier of gojiberry in the world. Thus far, limited information is available about genetic resources, breeding activities, and major cultivars of gojiberry. This chapter is intended to review the current knowledge on gojiberry germplasm resources and their relationships as well as to describe gojiberry breeding activities. Future prospects on gojiberry cultivar development are also discussed
Thermotropic Phase Boundaries in Classic Ferroelectrics
High-performance piezoelectrics are lead-based solid solutions that exhibit a so-called morphotropic phase boundary, which separates two competing phases as a function of chemical composition; as a consequence, an intermediate low-symmetry phase with a strong piezoelectric effect arises. In search for environmentally sustainable lead-free alternatives that exhibit analogous characteristics, we use a network of competing domains to create similar conditions across thermal inter-ferroelectric transitions in simple, lead-free ferroelectrics such as BaTiO3 and KNbO3. Here we report the experimental observation of thermotropic phase boundaries in these classic ferroelectrics, through direct imaging of low-symmetry intermediate phases that exhibit large enhancements in the existing nonlinear optical and piezoelectric property coefficients. Furthermore, the symmetry lowering in these phases allows for new property coefficients that exceed all the existing coefficients in both parent phases. Discovering the thermotropic nature of thermal phase transitions in simple ferroelectrics thus presents unique opportunities for the design of \u27green\u27 high-performance materials
Comparative study of durability of hybrid direct carbon fuel cells with anthracite coal and bituminous coal
The author would like to acknowledge the funding support of âEfficient Conversion of Coal to Electricity-Direct Coal Fuel Cellâ with the grant number âRFCR-CT-2011-00004â from the Research Fund for Coal & Steel of the European commission. CJ acknowledges the Royal Society of Edinburgh for a RSE BP Hutton Prize in Energy Innovation.Direct carbon fuel cells offer the opportunity of generating energy from coal at high efficiency as an alternative to the procedure of conventional power plants. In this study, raw anthracite coal and raw bituminous coal were investigated in a hybrid direct carbon fuel cell (HDCFC), which was a combination of a solid oxide fuel cell and a molten carbonate fuel cell. Mechanical mixing was confirmed to be an efficient method of mixing coal with carbonate. The coal samples had different properties, for example, carbon content, hydrogen content, volatile matter and impurities. The results showed that the maximum power density obtained by the cell with anthracite coal was similar to that obtained by the cell with bituminous coal. It was found that the total power output from coal in HDCFCs mostly depended on the carbon content, while volatile matter, hydrogen content, moisture, etc. had an effect on the short-term durability. HDCFCs were kept operating for more than 120Â h with 1.6Â g coal. This study demonstrates that energy can be generated efficiently by employing anthracite and bituminous coal in hybrid direct carbon fuel cells.PostprintPeer reviewe
The Stability of Radiatively Cooled Jets in Three Dimensions
The effect of optically thin radiative cooling on the Kelvin-Helmholtz
instability of three dimensional jets is investigated via linear stability
theory and nonlinear hydrodynamical simulation. Two different cooling functions
are considered: radiative cooling is found to have a significant effect on the
stability of the jet in each case. The wavelengths and growth rates of unstable
modes in the numerical simulations are found to be in good agreement with
theoretical predictions. Disruption of the jet is found to be sensitive to the
precessional frequency at the origin with lower frequencies leading to more
rapid disruption. Strong nonlinear effects are observed as the result of the
large number of normal modes in three dimensions which provide rich mode-mode
interactions. These mode-mode interactions provide new mechanisms for the
formation of knots in the flows. Significant structural features found in the
numerical simulations appear similar to structures observed on protostellar
jets.Comment: 32 pages, 13 figures, figures included in page tota
Nonlinear Spring-Mass-Damper Modeling and Parameter Estimation of Train Frontal Crash Using CLGAN Model
Due to the complexity of a train crash, it is a challenging process to describe and estimate mathematically. Although different
mathematical models have been developed, it is still difficult to balance the complexity of models and the accuracy of estimation.
,is paper proposes a nonlinear spring-mass-damper model of train frontal crash, which achieves high accuracy and maintains
low complexity. ,e Convolutional Long-short-term-memory Generation Adversarial Network (CLGAN) model is applied to
study the nonlinear parameters dynamic variation of the key components of a rail vehicle (e.g., the head car, anticlimbing energy
absorber, and the coupler buffer devices). Firstly, the nonlinear lumped model of train frontal crash is built, and then the physical
parameters are deduced in twenty different cases using DâAlembertâs principle. Secondly, the input/output relationship of the
CLGAN model is determined, where the inputs are the nonlinear physical parameters in twenty initial conditions, and the output
is the nonlinear relationship between the train crash nonlinear parameters under other initial cases. Finally, the train crash
dynamic characteristics are accurately estimated during the train crash processes through the training of the CLGAN model, and
then the crash processes under different given conditions can be described effectively. ,e estimation results exhibit good
agreement with finite element (FE) simulations and experimental results. Furthermore, the CLGAN model shows great potential
in nonlinear estimation, and CLGAN can better describe the variation of nonlinear spring damping compared with the traditional
model. ,e nonlinear spring-mass-damper modeling is involved in improving the speed and accuracy of the train crash estimation, as well as being able to offer guidance for structure optimization in the early design stage
Distance Properties of Short LDPC Codes and their Impact on the BP, ML and Near-ML Decoding Performance
Parameters of LDPC codes, such as minimum distance, stopping distance,
stopping redundancy, girth of the Tanner graph, and their influence on the
frame error rate performance of the BP, ML and near-ML decoding over a BEC and
an AWGN channel are studied. Both random and structured LDPC codes are
considered. In particular, the BP decoding is applied to the code parity-check
matrices with an increasing number of redundant rows, and the convergence of
the performance to that of the ML decoding is analyzed. A comparison of the
simulated BP, ML, and near-ML performance with the improved theoretical bounds
on the error probability based on the exact weight spectrum coefficients and
the exact stopping size spectrum coefficients is presented. It is observed that
decoding performance very close to the ML decoding performance can be achieved
with a relatively small number of redundant rows for some codes, for both the
BEC and the AWGN channels
Analysis of spontaneous ignition of hydrogen-enriched methane in a rectangular tube
This study investigates the spontaneous ignition of high-pressure hydrogen-enriched methane in air within a rectangular tube. A computationally efficient approach has been adopted, utilizing a reduced reaction mechanism and ignition delay model within a 3D Large Eddy Simulation (LES) framework. This approach overcomes the limitations of traditional 1D and 2D simulations with detailed chemistry models, which are unable to accurately reproduce the complex 3D shock wave structures within the tube. The simulated shock wave behavior during 9 MPa hydrogen leakage (case 1) and 11 MPa 90 vol% hydrogen/10 vol% methane mixture leakage (case 2) are found to agree well with experimental observations. In case 2, the hot spots generated by reflected shock waves and Mach reflections ignite the hydrogen/methane-air mixture, resulting in three sequential spontaneous ignitions. The flame is observed to primarily propagate along the tube corners and wall centers, with the central ignition spreading across the entire cross-section. For the 25 MPa 24 vol% hydrogen/76 vol% methane mixture leakage (case 6), the shock intensity is significantly reduced due to the increased methane proportion, leading to spontaneous ignition only at the tube corners when the hemispherical shock wave reflects from the wall. The flame predominantly forms downstream along the tube corner, gradually spreading along the tube wall. It is indicated that while the probability of spontaneous ignition decreases with increasing methane content, the risk remains significant under sufficiently high pressures. To the best our knowledge, this study represents the first 3D large eddy simulation of spontaneous ignition for high-pressure hydrogen-enriched methane leakage into air, providing valuable insights into the underlying physical phenomena
Imaging Mass Spectrometry Detection of Gangliosides Species Within the Mouse Brain Following Transient Focal Cerebral Ischemia
Gangliosides, a member of the glycosphingolipid family, are heterogeneously expressed in biological membranes and are particularly enriched within the central nervous system. Gangliosides consist of mono- or poly-sialylated oligosaccharide chains of variable lengths attached to a ceramide unit and are found to be intimately involved in brain disease development. The purpose of this study is to examine the spatial profile of ganglioside species using matrix-assisted laser desorption/ionization (MALDI) imaging (IMS) following middle cerebral artery occlusion (MCAO) reperfusion injury in the mouse. IMS is a powerful method to not only discriminate gangliosides by their oligosaccharide components, but also by their carbon length within their sphingosine base. Mice were subjected to a 30 min unilateral MCAO followed by long-term survival (up to 28 days of reperfusion). Brain sections were sprayed with the matrix 5-Chloro-2-mercaptobenzothiazole, scanned and analyzed for a series of ganglioside molecules using an Applied Biosystems 4800 MALDI TOF/TOF. Traditional histological and immunofluorescence techniques were performed to assess brain tissue damage and verification of the expression of gangliosides of interest. Results revealed a unique anatomical profile of GM1, GD1 and GT1b (d18â¶1, d20â¶1 as well as other members of the glycosphingolipid family). There was marked variability in the ratio of expression between ipsilateral and contralateral cortices for the various detected ganglioside species following MCAO-reperfusion injury. Most interestingly, MCAO resulted in the transient induction of both GM2 and GM3 signals within the ipsilateral hemisphere; at the border of the infarcted tissue. Taken together, the data suggest that brain region specific expression of gangliosides, particularly with respect to hydrocarbon length, may play a role in neuronal responses to injury
Ultra-Wideband Angle-of-Arrival Tracking Systems
Systems that measure the angles of arrival of ultra-wideband (UWB) radio signals and perform triangulation by use of those angles in order to locate the sources of those signals are undergoing development. These systems were originally intended for use in tracking UWB-transmitter-equipped astronauts and mobile robots on the surfaces of remote planets during early stages of exploration, before satellite-based navigation systems become operational. On Earth, these systems could be adapted to such uses as tracking UWB-transmitter-equipped firefighters inside buildings or in outdoor wildfire areas obscured by smoke. The same characteristics that have made UWB radio advantageous for fine resolution ranging, covert communication, and ground-penetrating radar applications in military and law-enforcement settings also contribute to its attractiveness for the present tracking applications. In particular, the waveform shape and the short duration of UWB pulses make it possible to attain the high temporal resolution (of the order of picoseconds) needed to measure angles of arrival with sufficient precision, and the low power spectral density of UWB pulses enables UWB radio communication systems to operate in proximity to other radio communication systems with little or no perceptible mutual interference
- âŠ