43 research outputs found

    Der Einfluss von Haftungsunsicherheit auf den Sorgfaltsstandard

    Full text link
    Optimal abgestimmte Vergütungs- und Haftungsregeln regen den Arzt zu einer effizienten Ressourcenverwendung und einem angemessenen Sorgfaltsniveau an. Die nicht nur in Deutschland zu beobachtende Abkehr von der Kostenerstattung hin zu Vergütungsformen mit mehr Kostenverantwortung für den Arzt zielt vornehmlich auf eine Ressourceneinsparung. Da sie zugleich aber das Sorgfaltsniveau bedroht, sollte ein geeigneter Haftungsanreiz bestehen. Im vorliegenden Papier beschreibe ich unter prospektiver Vergütung sowie den realistischen Annahmen von Haftungsunsicherheit und Unterschieden zwischen den Ärzten in der Sorgfaltswaltung einen wohlfahrtsoptimalen Sorgfaltsstandard. Dieser entscheidet unter dem herrschenden Verschuldensprinzip über die Verurteilung eines Arztes zu Schadensersatz und definiert damit den Haftungsanreiz. Es erweist sich, dass der Standard in Abhängigkeit von den Eigenschaften der Ärzte, der Wahrscheinlichkeit gerichtlicher Fehlentscheidungen und der relativen gesellschaftlichen Belastung durch Fahrlässigkeit und Defensivmedizin größer oder kleiner als das Wohlfahrtsoptimum unter Sicherheit ist. Dieses Ergebnis steht im Kontrast zu Empfehlungen von Experten, die in Anbetracht eines steigenden Haftungsdrucks eine Absenkung der Sorgfaltsanforderungen befürworten.Optimally designed reimbursement and liability rules lead physicians to practice efficiently and carefully. The introduction of supply-side cost sharing in Germany and elsewhere should therefore be complemented by an appropriate liability incentive. Otherwise, resources are used efficiently but the level of care is too low. Under the assumptions of liability uncertainty and heterogeneous physicians I derive an optimal standard of due care. In deciding whether a physician acted negligently or not, the standard defines the liability threat of the negligence rule. Dependent on the distribution of physicians' types, probabilities of type one and type two errors in courts' judgments, and society's costs of negligence and defensive medicine, this second-best standard may well be above the first-best level of care. In contrast, medico-legal experts currently plead for a decrease of the standard of due care to cope with an increase of liability threat

    Metabolic Effects of n-3 PUFA as Phospholipids Are Superior to Triglycerides in Mice Fed a High-Fat Diet: Possible Role of Endocannabinoids

    Get PDF
    Background n-3 polyunsaturated fatty acids, namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), reduce the risk of cardiovascular disease and can ameliorate many of obesity-associated disorders. We hypothesised that the latter effect will be more pronounced when DHA/EPA is supplemented as phospholipids rather than as triglycerides. Methodology/Principal Findings In a ‘prevention study’, C57BL/6J mice were fed for 9 weeks on either a corn oil-based high-fat obesogenic diet (cHF; lipids ~35% wt/wt), or cHF-based diets in which corn oil was partially replaced by DHA/EPA, admixed either as phospholipids or triglycerides from marine fish. The reversal of obesity was studied in mice subjected to the preceding cHF-feeding for 4 months. DHA/EPA administered as phospholipids prevented glucose intolerance and tended to reduce obesity better than triglycerides. Lipemia and hepatosteatosis were suppressed more in response to dietary phospholipids, in correlation with better bioavailability of DHA and EPA, and a higher DHA accumulation in the liver, white adipose tissue (WAT), and muscle phospholipids. In dietary obese mice, both DHA/EPA concentrates prevented a further weight gain, reduced plasma lipid levels to a similar extent, and tended to improve glucose tolerance. Importantly, only the phospholipid form reduced plasma insulin and adipocyte hypertrophy, while being more effective in reducing hepatic steatosis and low-grade inflammation of WAT. These beneficial effects were correlated with changes of endocannabinoid metabolome in WAT, where phospholipids reduced 2-arachidonoylglycerol, and were more effective in increasing anti-inflammatory lipids such as N-docosahexaenoylethanolamine. Conclusions/Significance Compared with triglycerides, dietary DHA/EPA administered as phospholipids are superior in preserving a healthy metabolic profile under obesogenic conditions, possibly reflecting better bioavalability and improved modulation of the endocannabinoid system activity in WA

    Synergistic induction of lipid catabolism and anti-inflammatory lipids in white fat of dietary obese mice in response to calorie restriction and n-3 fatty acids

    Full text link
    Calorie restriction is an essential component in the treatment of obesity and associated diseases. Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) act as natural hypolipidaemics, reduce the risk of cardiovascular disease and could prevent the development of obesity and insulin resistance. We aimed to characterise the effectiveness and underlying mechanisms of the combination treatment with LC n-3 PUFA and 10% calorie restriction in the prevention of obesity and associated disorders in mice. Male mice (C57BL/6J) were habituated to a corn-oil-based high-fat diet (cHF) for 2 weeks and then randomly assigned to various dietary treatments for 5 weeks or 15 weeks: (1) cHF, ad libitum; (2) cHF with LC n-3 PUFA concentrate replacing 15% (wt/wt) of dietary lipids (cHF + F), ad libitum; (3) cHF with calorie restriction (CR; cHF + CR); and (4) cHF + F + CR. Mice fed a chow diet were also studied. We show that white adipose tissue plays an active role in the amelioration of obesity and the improvement of glucose homeostasis by combining LC n-3 PUFA intake and calorie restriction in cHF-fed mice. Specifically in the epididymal fat in the abdomen, but not in other fat depots, synergistic induction of mitochondrial oxidative capacity and lipid catabolism was observed, resulting in increased oxidation of metabolic fuels in the absence of mitochondrial uncoupling, while low-grade inflammation was suppressed, reflecting changes in tissue levels of anti-inflammatory lipid mediators, namely 15-deoxy-Delta(12,15)-prostaglandin J(2) and protectin D1. White adipose tissue metabolism linked to its inflammatory status in obesity could be modulated by combination treatment using calorie restriction and dietary LC n-3 PUFA to improve therapeutic strategies for metabolic syndrome

    Cohort profile: the German Diabetes Study (GDS)

    Full text link

    Absence of the kinase S6k1 mimics the effect of chronic endurance exercise on glucose tolerance and muscle oxidative stress

    No full text
    OBJECTIVE: Ribosomal protein S6 Kinase-1 (S6K1) has been linked to resistance exercise-mediated improvements in glycemia. We hypothesized that S6K1 may also play a role in regulating glycemic control in response to endurance exercise training. METHODS: S6k1-knockout (S6K1KO) and WT mice on a 60 cal% high-fat diet were trained for 4 weeks on treadmills, metabolically phenotyped, and compared to sedentary controls. RESULTS: WT mice showed improved glucose tolerance after training. In contrast, S6K1KO mice displayed equally high glucose tolerance already in the sedentary state with no further improvement after training. Similarly, training decreased mitochondrial ROS production in skeletal muscle of WT mice, whereas ROS levels were already low in the sedentary S6K1KO mice with no further decrease after training. Nevertheless, trained S6K1KO mice displayed an increased running capacity compared to trained WT mice, as well as substantially reduced triglyceride contents in liver and skeletal muscle. The improvements in glucose handling and running endurance in S6K1KO mice were associated with markedly increased ketogenesis and a higher respiratory exchange ratio. CONCLUSIONS: In high-fat fed mice, loss of S6K1 mimics endurance exercise training by reducing mitochondrial ROS production and upregulating oxidative utilization of ketone bodies. Pharmacological targeting of S6K1 may improve the outcome of exercise-based interventions in obesity and diabetes

    Human myocardial mitochondrial oxidative capacity is impaired in mild acute heart transplant rejection.

    No full text
    AIMS: Acute cellular rejection (ACR) following heart transplantation (HTX) is associated with long-term graft loss and increased mortality. Disturbed mitochondrial bioenergetics have been identified as pathophysiological drivers in heart failure, but their role in ACR remains unclear. We aimed to prove functional disturbances of myocardial bioenergetics in human heart transplant recipients with mild ACR by assessing myocardial mitochondrial respiration using high-resolution respirometry, digital image analysis of myocardial inflammatory cell infiltration, and clinical assessment of HTX patients. We hypothesized that (i) mild ACR is associated with impaired myocardial mitochondrial respiration and (ii) myocardial inflammation, systemic oxidative stress, and myocardial oedema relate to impaired mitochondrial respiration and myocardial dysfunction. METHODS AND RESULTS: We classified 35 HTX recipients undergoing endomyocardial biopsy according International Society for Heart and Lung Transplantation criteria to have no (0R) or mild (1R) ACR. Additionally, we quantified immune cell infiltration by immunohistochemistry and digital image analysis. We analysed mitochondrial substrate utilization in myocardial fibres by high-resolution respirometry and performed cardiovascular magnetic resonance (CMR). ACR (1R) was diagnosed in 12 patients (34%), while the remaining 23 patients revealed no signs of ACR (0R). Underlying cardiomyopathies (dilated cardiomyopathy 50% vs. 65%; P = 0.77), comorbidities (type 2 diabetes mellitus: 50% vs. 35%, P = 0.57; chronic kidney disease stage 5: 8% vs. 9%, P > 0.99; arterial hypertension: 59% vs. 30%, P = 0.35), medications (tacrolimus: 100% vs. 91%, P = 0.54; mycophenolate mofetil: 92% vs. 91%, P > 0.99; prednisolone: 92% vs. 96%, P > 0.99) and time post-transplantation (21.5 ± 26.0 months vs. 29.4 ± 26.4 months, P = 0.40) were similar between groups. Mitochondrial respiration was reduced by 40% in ACR (1R) compared with ACR (0R) (77.8 ± 23.0 vs. 128.0 ± 33.0; P < 0.0001). Quantitative assessment of myocardial CD3+ -lymphocyte infiltration identified ACR (1R) with a cut-off of >14 CD3+ -lymphocytes/mm2 (100% sensitivity, 82% specificity; P < 0.0001). Myocardial CD3+ infiltration (r = -0.41, P < 0.05), systemic oxidative stress (thiobarbituric acid reactive substances; r = -0.42, P < 0.01) and myocardial oedema depicted by global CMR derived T2 time (r = -0.62, P < 0.01) correlated with lower oxidative capacity and overt cardiac dysfunction (global longitudinal strain; r = -0.63, P < 0.01). CONCLUSIONS: Mild ACR with inflammatory cell infiltration associates with impaired mitochondrial bioenergetics in cardiomyocytes. Our findings may help to identify novel checkpoints in cardiac immune metabolism as potential therapeutic targets in post-transplant care
    corecore