71 research outputs found

    The Consequence of Backward Linkage of RMG Sector in Bangladesh - an Overview

    Get PDF
    In the context of Bangladesh backward linkages are playing the major role, as in the global apparel market buyers place order with competitive pricing along with the shortest possible lead time. So, to sustain  with the other countries in the open market economy this RMG is facing too many challenges due to lack of industrial exposure in our economy and the sector cannot get adequate support from backward linkage industries. On that note most of the cases we need to depend on the external sources for the raw materials. The purpose of the study is to identify the current status of backward linkages of RMG sector in Bangladesh and also how we can improve the conditions of backward linkages compared to the demand. The research contains the condition of backward linkage industries in Bangladesh, the barriers of RMG sector, the findings and solutions of those barriers and last but not the least the opportunities of this growing industry. The research is focusing on how the backward linkage industries help RMG sector to meet the buyer's lead time and what the initiatives should be taken to set up more backward linkage industries for being more competitive in the open market economy

    A critical review on the synthesis of natural sodium alginate based composite materials: An innovative biological polymer for biomedical delivery applications

    Get PDF
    Sodium alginate (Na-Alg) is water-soluble, neutral, and linear polysaccharide. It is the derivative of alginic acid which comprises 1,4-β-d-mannuronic (M) and α-l-guluronic (G) acids and has the chemical formula (NaC6H7O6). It shows water-soluble, non-toxic, biocompatible, biodegradable, and non-immunogenic properties. It had been used for various biomedical applications, among which the most promising are drug delivery, gene delivery, wound dressing, and wound healing. For different biomedical applications, it is used in different forms with the help of new techniques. That is the reason it had been blended with different polymers. In this review article, we present a comprehensive overview of the combinations of sodium alginate with natural and synthetic polymers and their biomedical applications involving delivery systems. All the scientific/technical issues have been addressed, and we have highlighted the recent advancements

    “MedChemVR”: A Virtual Reality Game to Enhance Medicinal Chemistry Education

    Get PDF
    Medicinal chemistry (MC) is an indispensable component of the pharmacy curriculum. The pharmacists’ unique knowledge of a medicine’s chemistry enhances their understanding of the pharmacological activity, manufacturing, storage, use, supply, and handling of drugs. However, chemistry is a challenging subject for both teaching and learning. These challenges are typically caused by the inability of students to construct a mental image of the three-dimensional (3D) structure of a drug molecule from its two-dimensional presentations. This study explores a prototype virtual reality (VR) gamification option, as an educational tool developed to aid the learning process and to improve the delivery of the MC subject to students. The developed system is evaluated by a cohort of 41 students. The analysis of the results was encouraging and provided invaluable feedback for the future development of the proposed system

    “MedChemVR”: A Virtual Reality Game to Enhance Medicinal Chemistry Education

    Get PDF
    Medicinal chemistry (MC) is an indispensable component of the pharmacy curriculum. The pharmacists’ unique knowledge of a medicine’s chemistry enhances their understanding of the pharmacological activity, manufacturing, storage, use, supply, and handling of drugs. However, chemistry is a challenging subject for both teaching and learning. These challenges are typically caused by the inability of students to construct a mental image of the three-dimensional (3D) structure of a drug molecule from its two-dimensional presentations. This study explores a prototype virtual reality (VR) gamification option, as an educational tool developed to aid the learning process and to improve the delivery of the MC subject to students. The developed system is evaluated by a cohort of 41 students. The analysis of the results was encouraging and provided invaluable feedback for the future development of the proposed system

    Enhancing Audio Classification Through MFCC Feature Extraction and Data Augmentation with CNN and RNN Models

    Get PDF
    Sound classification is a multifaceted task that necessitates the gathering and processing of vast quantities of data, as well as the construction of machine learning models that can accurately distinguish between various sounds. In our project, we implemented a novel methodology for classifying both musical instruments and environmental sounds, utilizing convolutional and recurrent neural networks. We used the Mel Frequency Cepstral Coefficient (MFCC) method to extract features from audio, which emulates the human auditory system and produces highly distinct features. Knowing how important data processing is, we implemented distinctive approaches, including a range of data augmentation and cleaning techniques, to achieve an optimized solution. The outcomes were noteworthy, as both the convolutional and recurrent neural network models achieved a commendable level of accuracy. As machine learning and deep learning continue to revolutionize image classification, it is high time to explore the development of adaptable models for audio classification. Despite the challenges associated with a small dataset, we successfully crafted our models using convolutional and recurrent neural networks. Overall, our strategy for sound classification bears significant implications for diverse domains, encompassing speech recognition, music production, and healthcare. We hold the belief that with further research and progress, our work can pave the way for breakthroughs in audio data classification and analysis

    Chitosan for suppression of fusarium wilt and plant growth promotion of brinjal

    No full text
    Chitosan is a biodegradable natural compound that has a great potentiality in agriculture for controlling plant diseases. An attempt was made to control Fusarium wilt caused by Fusarium oxysporum f. sp. melongenae under inoculated field condition and increase the growth and yield of brinjal by chitosan. Before setting the experiments in the field, preliminary laboratory experiments were carried out to select virulent isolate and effective dose of chitosan against the mycelial growth of the selected pathogen. F. oxysporum f. sp. melongenae isolate F-1 was found to be the most virulent on brinjal in pathogenicity test. Chitosan @ 1.0% concentration was appeared to be the highest inhibitory to the test pathogen at in vitro condition. Additionally, seed treatment with 1.0% chitosan for 12 hrs resulted in the highest increased in germination and seedling growth of brinjal. The field experiment was conducted following Randomized Complete Block Design (RCBD) with four treatments. No treatment was given in T1, the pathogen was inoculated in T2 and seed treatment and soil amendment with 1.0% chitosan was done in T3 and T4, respectively, in test pathogen inoculated condition. Application of 1.0% chitosan as a seed treatment (T3) or soil amendment (T4) significantly reduced pre- and post-emergence seedling mortality, incidence and severity of Fusarium wilt as well as enhanced germination percentage, plant growth and yield of brinjal. On the contrary, pre-emergence and post-emergence seedling mortality, disease incidence and severity of Fusarium wilt were highest in treatment T2 where the soil was inoculated with pathogen without chitosan. Therefore, chitosan could be used against this vascular disease as an alternative to inorganic fungicides and augment yield

    Molecular Basis of Surgical Coaptation Techniques in Peripheral Nerve Injuries

    No full text
    Peripheral nerve injuries requiring surgical repair affect over 100,000 individuals in the US annually. Three accepted methods of peripheral repair include end-to-end, end-to-side, and side-to-side neurorrhaphy, each with its own set of indications. While it remains important to understand the specific circumstances in which each method is employed, a deeper understanding of the molecular mechanisms underlying the repair can add to the surgeon’s decision-making algorithm when considering each technique, as well as help decide nuances in technique such as the need for making epineurial versus perineurial windows, length and dept of the nerve window, and distance from target muscle. In addition, a thorough knowledge of individual factors that are active in a particular repair can help guide research into adjunct therapies. This paper serves to summarize the similarities and divergences of the three commonly used nerve repair strategies and the scope of molecular mechanisms and signal transduction pathways in nerve regeneration as well as to identify the gaps in knowledge that should be addressed if we are to improve clinical outcomes in our patients
    • …
    corecore