9,803 research outputs found

    Elliptic stars in a chaotic night

    Full text link
    We study homeomorphisms of the two-torus, homotopic to the identity, whose rotation set has non-empty interior. For such maps, we give a purely topological characterisation of elliptic islands in a chaotic sea in terms of local rotation subsets. We further show that the chaotic regime defined in this way cannot contain any Lyapunov stable points. In order to demonstrate our results, we introduce a parameter family inspired by an example of Misiurewicz and Ziemian.Comment: 15 pages, 7 Figures; Revised versions with some minor corrections

    Normal edge-colorings of cubic graphs

    Get PDF
    A normal kk-edge-coloring of a cubic graph is an edge-coloring with kk colors having the additional property that when looking at the set of colors assigned to any edge ee and the four edges adjacent it, we have either exactly five distinct colors or exactly three distinct colors. We denote by χN(G)\chi'_{N}(G) the smallest kk, for which GG admits a normal kk-edge-coloring. Normal kk-edge-colorings were introduced by Jaeger in order to study his well-known Petersen Coloring Conjecture. More precisely, it is known that proving χN(G)5\chi'_{N}(G)\leq 5 for every bridgeless cubic graph is equivalent to proving Petersen Coloring Conjecture and then, among others, Cycle Double Cover Conjecture and Berge-Fulkerson Conjecture. Considering the larger class of all simple cubic graphs (not necessarily bridgeless), some interesting questions naturally arise. For instance, there exist simple cubic graphs, not bridgeless, with χN(G)=7\chi'_{N}(G)=7. On the other hand, the known best general upper bound for χN(G)\chi'_{N}(G) was 99. Here, we improve it by proving that χN(G)7\chi'_{N}(G)\leq7 for any simple cubic graph GG, which is best possible. We obtain this result by proving the existence of specific no-where zero Z22\mathbb{Z}_2^2-flows in 44-edge-connected graphs.Comment: 17 pages, 6 figure

    UHE neutrino searches using a Lunar target: First Results from the RESUN search

    Full text link
    During the past decade there have been several attempts to detect cosmogenic ultra high energy (UHE) neutrinos by searching for radio Cerenkov bursts resulting from charged impact showers in terrestrial ice or the lunar regolith. So far these radio searches have yielded no detections, but the inferred flux upper limits have started to constrain physical models for UHE neutrino generation. For searches which use the Moon as a target, we summarize the physics of the interaction, properties of the resulting Cerenkov radio pulse, detection statistics, effective aperture scaling laws, and derivation of upper limits for isotropic and point source models. We report on initial results from the RESUN search, which uses the Expanded Very Large Array configured in multiple sub-arrays of four antennas at 1.45 GHz pointing along the lunar limb. We detected no pulses of lunar origin during 45 observing hours. This implies upper limits to the differential neutrino flux E^2 dN/dE < 0.003 EeV km^{-2} s^{-1} sr^{-1} and < 0.0003 EeV km$^{-2} s^{-1} at 90% confidence level for isotropic and sampled point sources respectively, in the neutrino energy range 10^{21.6} < E(eV) < 10^{22.6}. The isotropic flux limit is comparable to the lowest published upper limits for lunar searches. The full RESUN search, with an additional 200 hours observing time and an improved data acquisition scheme, will be be an order of magnitude more sensitive in the energy range 10^{21} < E(eV) < 10^{22} than previous lunar-target searches, and will test Z burst models of neutrino generation.Comment: 26 pages, 14 figure

    Sand stirred by chaotic advection

    Full text link
    We study the spatial structure of a granular material, N particles subject to inelastic mutual collisions, when it is stirred by a bidimensional smooth chaotic flow. A simple dynamical model is introduced where four different time scales are explicitly considered: i) the Stokes time, accounting for the inertia of the particles, ii) the mean collision time among the grains, iii) the typical time scale of the flow, and iv) the inverse of the Lyapunov exponent of the chaotic flow, which gives a typical time for the separation of two initially close parcels of fluid. Depending on the relative values of these different times a complex scenario appears for the long-time steady spatial distribution of particles, where clusters of particles may or not appear.Comment: 4 pages, 3 figure

    Optoelectronic Reservoir Computing

    Get PDF
    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an opto-electronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations.Comment: Contains main paper and two Supplementary Material

    Public Libraries and the Internet 2006

    Get PDF
    Examines the capability of public libraries to provide and sustain public access Internet services and resources that meet community needs, including serving as the first choice for content, resources, services, and technology infrastructure

    Internet Justice: Reconceptualizing the Legal Rights of Persons with Disabilities to Promote Equal Access in the Age of Rapid Technological Change

    Get PDF
    Although a range of laws and regulations have been created in the United States to promote online accessibility for persons with disabilities, tremendous disparities persist in access to Internet technologies and content. Such inaccessibility is an enormous barrier to equality and participation in society for persons with disabilities. The current legal approaches to online accessibility have not proven successful, focusing on specific technologies and technical solutions to accessibility. This paper argues for a reconceptualization of the approach to promoting legal guarantees of online access for persons with disabilities, focusing on information and communication goals, the processes of accessing information, and new approaches to monitoring, guidance, and enforcement. Without a broader conception of accessibility under the law, persons with disabilities risk being increasingly excluded from the technologies and content of the Internet that are coming to define social, educational, employment, and government interactions
    corecore